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ABSTRACT
It has so far been unclear which data-intensive CPU tasks
can be accelerated with GPUs, as GPUs are bottlenecked by
the slow bus connection to the CPU and the limited size of
GPU memories.

In this paper we demonstrate a database workload where
co-processing actually helps: accelerating large join pipelines
where the join condition is selective, by pushing down a
Bloom filter test for early pruning. GPUs are more pow-
erful than CPUs for computing hash functions needed in
Bloom filter tests, have a local memory with significantly
more random-access bandwidth than the CPU, and since
only keys (or extracts thereof) have to be moved to the GPU,
data transfers over the bus are relatively small. Our micro-
benchmarks show that raw Bloom filter lookups are up to
6× faster on the GPU than on the CPU in case the Bloom
filter is larger than the CPU cache.
The next quest is for a database architecture that allows

efficient CPU-GPU co-processing. We present a new het-
erogeneous query processing framework based on fluid co-
processing. In fluid co-processing, tasks of different sizes
– that fit the device – are dynamically co-processed. Early
results show that fluid co-processing consistently improves
end-to-end CPU performance of early pruning in join queries
thanks to the GPU, by factors up to 2-3×.
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1 INTRODUCTION
As the performance of modern processors is increasingly lim-
ited by power consumption and heat dissipation, the so called
power wall, modern hardware progressively evolves into
a landscape of heterogeneous devices. Besides traditional
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Figure 1: Early pruning in large selective joins

CPUs, these devices include GPUs, FPGAs and specialized
hardware. Particularly, the acceleration of compute-intensive
tasks [20] using GPUs has gained tremendous traction.

GPUs significantly outperformCPUs in compute-intensive
tasks, as they combine a massively parallel architecture with
high bandwidth memory. However, since analytic workloads
are data-intensive rather than compute-intensive, GPUs typ-
ically fail to accelerate database workloads. The main prob-
lems are the limited size of the local GPU memory and the
limited PCI bus bandwidth between CPU and GPU. GPUs
typically have less than 16 GiB of memory, while main mem-
ories attached to a CPU are typically an order of magnitude
larger (and flash or other persistent memories are yet an-
other order of magnitude bigger). The current generation of
bus architectures in practice is limited to sustained transfer
of 12 GiB/s; whereas CPU memory bandwidth is well over
100 GiB/s and internal GPU memory can be over 400 GiB/s.

In scientific literature where advances of GPU-accelerated
database systems are demonstrated, the experiments are typ-
ically performed on small datasets, cached in the local GPU
memory, such that significant CPU-GPU data transfers are
avoided; or the CPU baselines that are compared with are
not state-of-the-art systems (e.g. VectorWise [3, 23] or Hy-
per [17, 19] would qualify our definition). While there are a
few start-up companies with GPU-accelerated database solu-
tions, these have little traction yet in the industry – a far cry
from the situation in Machine Learning (ML) where GPUs
are in extreme demand by industry (ML being a compute
rather than data-intensive workload). Given that heteroge-
neous hardware acceleration would be especially useful for
Big Data analysis tasks where queries take a lot of time, the
search was still on for database use-cases where GPUs fit in.

https://doi.org/10.1145/3329785.3329934
https://doi.org/10.1145/3329785.3329934
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This paper contributes a use-case where GPUs can truly
contribute: early pruning in large selective joins.
Recent work [13] shows that GPUs are able to efficiently

prune using Bloom filters [2]. In database systems, Bloom
filters can be exploited in queries with selective joins, to
quickly eliminate disqualifying tuples, before they even en-
ter the join. Concretely, after completing the build phase of a
hash-join, a bloom filter can be created that holds the set of
keys in the hash table. This Bloom filter is smaller than the
hash table and is cheaper to probe. Also, it can be probed very
early in the query (early pruning) even in the scan operator
on the probe side of the query plan. This could mean that
when whole stretches of keys fail to qualify, whole blocks
of data holding the non-key columns can be skipped (saving
I/O and decompression effort in column stores). Also, other
operators in between the scan and the selective join (e.g.,
other joins or aggregations) will receive less tuples and will
be accelerated, thanks to the early pruning. This is depicted
in the left of Figure 1. However, large hash tables that hold
many keys require larger Bloom filters. Once the Bloom fil-
ter size exceeds CPU caches, L3 cache size in particular, the
Bloom filter lookup throughput drops significantly due to
additional main memory access. The right side of Figure 1
illustrates that this is a situation where the higher memory
bandwidth of GPUs will significantly improve lookup per-
formance. A Bloom filter is much smaller than a hash table
storing the same amount of keys and some payloads – there-
fore it is reasonable that to assume that if a hash table fits
in the CPU memory, the corresponding Bloom filter should
fit in GPU memory. GPUs are more powerful than CPUs
for computing hash functions needed in Bloom filter tests,
have a local memory with significantly more random-access
bandwidth than the CPU, and since only keys (or extracts
thereof) have to be moved to the GPU, data transfers over
the bus are relatively small. All of this makes CPU offloading
of large Bloom filtering a very promising task. Our micro-
benchmarks show that raw Bloom filter lookups are up to
6× faster on the GPU than on the CPU in case the Bloom
filter is larger than the CPU cache (skip to Figure 3).
The follow-up question is what a database architecture

should look like that can efficiently offload tasks to the GPU.
On the one hand, it has been shown that many-core CPUs
can perfectly scale joins using shared hash-tables and an
adaptive, fine-grained ("morsel driven") task allocation [17].
On the other hand, for Bloom filtering, keys needs to be
transferred to the GPU on-the-fly; and these transfers have to
be relatively coarse-grained in order to achieve good transfer
speeds over the bus. Given the fact that bus transfer speeds
are a bottleneck (an order of magnitude slower than memory
access), this is a critical detail. We therefore propose the fluid
co-processing framework, wherein (i) query pipelines are
cut into dependent fragments that may run on a specific
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Figure 2: Bloom filter variants

device or on both (ii) both CPU and GPU adaptively accept
work from a shared queue and (iii) different granularities
(amounts of tuples) are used for work-distribution: the GPU
getting larger work units at-a-time than the CPU. Our early
results show that fluid co-processing consistently improves
end-to-end CPU performance of early pruning in join queries
thanks to the GPU, by factors up to 2-3×.

2 FAST CPU AND GPU BLOOM FILTERS
The Bloom filter [2] represents a collection of n keys with
an initially-zeroed array ofm bits, setting for each inserted
key k bits to 1, using as many hash functions to identify the
positions [0,m) where the bits are set in the array. This struc-
ture allows for fast true-negative tests, but it can produce
false-positives at some probability that drops with larger
m and k . In their classic implementation, multiple (up to k)
random memory accesses are necessary to check the bits
a key sets. A blocked Bloom filter [21] represents the data
structure as a set ofm/B blocks, each of which contains a
small Bloom filter of size B – a hash function determines in
which block a key must be stored. To optimize in-memory
processing, the size of a block is equal to the the size of a
cache line, because this allows a key to be looked up with at
most one cache miss. On GPUs, cache lines are typically 128
bytes and aligned in global memory; we therefore use up to
B=1024 bits in our blocked GPU Bloom Filters.

Recently, an experimental study was published on (CPU-
based) Bloom filtering [15], which also introduced a number
of innovations. One of these is the idea to use minuscule
blocks that are as small as a 32-bit register, because this
allows to test all k bits in one load-compare instruction se-
quence. That is, the lookup code first computes a bit mask
with k bits set, loads one word and tests that against the
mask with one AND and on CMP instruction. Rather than
requiring k independent hash calculations, it can often do
with a single 64-bits hash, extracting from that a sequence
of loд2(B) bits to identify the block, and k small (5-bit =
loд2(32)) random bit sequences to identify the bits. Such
register-blocked Bloom filters test all bits at once, as opposed
to classic Bloom filters which need a loop with k iterations,
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Figure 3: Bloom filter probe throughput varying the
bloomfilter size. For larger Bloomfilters, the through-
put on GPU is up to 6× the CPU lookup performance.
This allows efficient support of (a) larger inner rela-
tions (hence, bigger Bloomfilters) and/or (b) more pre-
cise Bloom filters.

with an early-out if a bit is found to be 0. Getting rid of the
loop and early-out branch is actually beneficial for the GPU,
because control-divergence is avoided.
Register-blocked Bloom filters are quite radical as they

maximally reduce computational work, but this goes at the
expense of accuracy; because mini Bloom filters of just 32
bits can get unlucky and receive many keys, in which case
their selective power deteriorates. In order to use larger
blocks that occupy the full 1024 bits of a GPU cache-line
(or 512-bits in case of the CPU), one can divide the block
in multiple sectors, e.g. 32 sectors of 32-bits. The sectorized
Bloom filter (see Figure 2) still tests multiple bits in each
sector at once to reap the aforementioned computational
benefits; but, it evenly spreads thek-bits overmultiple sectors
in the block. In fact, not all sectors need to receive bits; rather,
a few of them are selected with yet another few random bits
from the hash number. For instance with k=8, one could
set/test 4 bits concentrated in two 32-bits words (=sectors)
out of 32. This approach thus combines computational and
memory efficiency, and can achieve high-precision and very
low lookup latency [15].

Figure 3 shows micro-benchmarks of our C++ and CUDA
implementation of Bloom filters on GPUs and CPUs (k=2,
n/m=8) for varying Bloom filter sizes (m). The hardware
is described in Section 4. For fairness, the CPU uses all its
cores; and the GPU performance includes copying the keys
(input) and the boolean results (output) resp. from and to
CPU memory. In all, while the CPU is competitive with the
GPU for smaller Bloom filters; when they start to exceed
the CPU L3 cache (beyond 16 MiB), a large performance gap
widens, up to a factor 6×.
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Figure 4: Fluid Co-Processing allows dynamic offload-
ing through work-stealing

3 FLUID CO-PROCESSING
Commonly, co-processing approaches statically assign spe-
cific operations to devices. Notable examples are CoGaDB [5]
and HAPE [7]. CoGaDB allows offloading specific operators
to devices. HAPE relies on HetExchange [6], an extension of
Volcano-model exchange operators [9] that allow offloading
of complete pipelines. However, static resource allocation
has two well-known caveats:
(a) It requires accurate cost-models to decide what to of-

fload. In practice, building “good” cost-models is very hard
and cost-models very often not precise [18].

(b) Optimal parallel performance requires load-balance, or
available hardware will become under-utilized. Imbalance
can have many causes, e.g. by interference (another process
running, processors clocking up/down), sub-optimal data
distributions or different hardware characteristics. However,
once a static parallel plan is created, load-balancing is hard
to achieve [10, 17].

3.1 Morsel-driven Parallelism is not enough
For CPU-only systems, morsel-driven parallelism [17] is
known to eliminate, or at least mitigate, these issues. In
a morsel-driven system, workers repeatedly consume tasks
from a global queue and execute them. The task granularity,
the morsel size, leads to the trade-off between scheduling
overhead (removing tasks from a queue) and load-balancing.
Small morsel sizes will lead to high scheduling overhead
whereas large morsel sizes will severely worsen opportuni-
ties for load-balancing.
However, extending the traditional morsel-driven paral-

lelism into a co-processing system is more complex:
(a) The optimal unit of work - the morsel size - differs

from device to device. For parallel CPU-based systems Leis
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Stream st ream ;
whi l e ( ! done ) {

Range range ;

i f ( probe . i s_gpu_done ) {
/ / Consume range o f Bloom f i l t e r r e s u l t and j o i n them
i f ( g e t _ r ange ( range , s tream , cpu_mor s e l _ s i z e ) ) {

j o i n ( stream , range ) ;

i f ( l a s t _mo r s e l ) {
s t ream . i s_cpu_done = t r u e ;

}
}

}

i f ( s t ream . i s_cpu_done ) {
/ / S chedu l e new GPU probe
s t ream . r e s e t ( ) ;
s t ream . i s_gpu_done = f a l s e ;
s t ream . i s_cpu_done = f a l s e ;
i f ( g e t _ r ange ( range , t a b l e , gpu_mor s e l _ s i z e ) ) {

s t ream . s ch edu l e ( range ) ;
}

}

/ / F a l l b a c k : CPU work
i f ( g e t _ r ange ( range , t a b l e , c pu_mor s e l _ s i z e ) ) {

c p u _ p i p e l i n e ( t a b l e , range ) ;
}

}

Listing 1: Simplified GPU+CPU worker loop with one
probe stream (probe)

et al. [17] suggest morsel sizes of roughly 10K – 100K. CPU-
GPU communication latencies force 10× – 100× largermorsel
sizes, to minimize scheduling overheads and achieve efficient
data transfers. The absence of an efficient common morsel
size prevents the naive approach of dividing the work into
equally sized chunks and pushing them into a queue.

(b) The classical morsel-driven parallelism executes a query
pipeline-by-pipeline. However, for co-processing, a pipeline
can contain multiple pipeline fragments. When executing
our join query on the GPU, we have two such fragments:
The first fragment, scans the table and evaluates the Bloom
filter on GPU. As we want to parallelize the following join
processing, we need a second fragment which consumes
morsels from the Bloom filter results and executes the join
followed by the aggregation.

Because of these reasons, we concluded that plain morsel-
driven parallelism is not “good” enough for Co-Processing
and therefore we needed to extend it.

3.2 Fluid Parallelism for Co-processing
To allow multiple morsel sizes, we replaced the task queue
(morsel queue) with a lock- and wait-free linear allocator. It
works similar to the following pseudo-code:

boo l g e t _ r ange ( Range& out , c on s t Tab l e& t , i n t mo r s e l _ s i z e ) {
o f f s e t = __sync_add_and_ fe t ch (& t . c u r r e n t _ o f f s e t , mo r s e l _ s i z e ) ;
i f ( o f f s e t > t . s i z e ( ) ) r e t u r n f a l s e ; / / f a i l e d g e t t i n g range
/ / use up to ' mor s e l _ s i z e ' s t a r t i n g from o f f s e t
out . o f f s e t = o f f s e t ;
out . num = MIN ( t . s i z e ( ) − o f f s e t , mo r s e l _ s i z e ) ;
r e t u r n t r u e ;

}

The allocator returns a range which points into the table
t. The linear range allocation relies on the atomic increment
(__sync_add_and_fetch) to move the starting offset forward.
If a valid offset was allocated, the actual size of the morsel is
determined. In practice, all morsels, except the last one, will
have the given morsel_size.

In contrast to morsel-driven parallelism’s one active pipe-
line, co-processing can work with multiple alternative pipe-
lines. In our case study, we have (1) the whole CPU-only
Bloom-filter + join-probe + aggregation pipeline that starts
with CPU Bloom filtering, (2a) GPU Bloom filtering and (2b)
CPU join-probe + aggregation. Tuples are either processed
with (1) or by (2a) followed by (2b). Figure 4 illustrates our
framework. Generally, we differentiate between GPU+CPU
workers and CPU workers. Their main difference being that
GPU+CPU workers can also schedule GPU work whereas
CPU workers only operate on CPU-only pipeline fragments.

A CPU worker runs in a loop. In each iteration it will try to
consume amorsel that either (a) evaluates the full pipeline for
a whole CPU morsel or, if a GPU bloom filter probe is ready,
(b) using the GPU bloom filter result disqualify non-matching
tuples and execute the join. GPU+CPU workers extend CPU
workers with the ability to also handle GPU work. They run
a loop similar to the pseudo-code in Listing 1. To allow full
utilization of the GPU, we prioritize GPU work over CPU
work. Additionally, we allow the use of multiple streams.
Each stream consists of copying to the GPU, executing the
Bloom filter lookup kernel and copying the results back.
Using multiple streams allows the GPU to efficiently overlap
computation kernels and data movement.
If a free/idle GPU stream is detected, it will first try to

consume a large GPU morsel from the table and schedule an-
other GPU Bloom filter probe. This probing process will run
asynchronously and is handled by the CUDA implementa-
tion. While the GPU+CPU worker waits for a probe to finish,
it will execute regular CPU work. When a GPU Bloom filter
lookup is finished, it will be schedule for work-sharing i.e. we
add it to a global queue of finished probes from which CPU
and GPU+CPU workers can consume morsels and execute
the remaining pipeline fragment.

4 EXPERIMENTAL EVALUATION
We implemented the proposed techniques in a prototype
1 which evaluates the query: SELECT SUM(a.k), SUM(b.p1),

SUM(b.p2), ..., SUM(b.p32) FROM a, b WHERE a.k = b.k.
In detail, our prototype operates on cache-resident vectors

in a columnar fashion, so called "vectorized execution" [3].
Its join operator executes a flat, non-partitioned, primary-
key-foreign-key hash join (i.e. either zero or one match in

1Source code can be found under: https://github.com/t1mm3/fluid_
coprocessing

https://github.com/t1mm3/fluid_coprocessing
https://github.com/t1mm3/fluid_coprocessing


Fluid Co-processing: GPU Bloom-filters for CPU Joins DaMoN’19, July 1, 2019, Amsterdam, Netherlands

0 10 20 30 40 50 60 70
Selectivity (in %)

2

4

6

8

10

12

14
Ti
m
e
(in

s)

CPU, no BF
CPU, BF
GPU+CPU, BF
GPU+CPU, BF (cached)

Figure 5: Co-processing always wins (64 MiB Bloom
filter). Lower selectivity means more pruned tuples.

the hash table) on a bucket-chained hash table with records
in row-wise layout [22]. Additionally, we simulated an ex-
pensive operator (P in Figure 1) between scan and join. In
our experiments, we use a Bloom filter with one sector and
set k = 2 bits. We used a probe relation with a cardinality
of 1 billion tuples. However, when scaling the inner rela-
tion we increased the outer relation to 4 billion tuples. Our
co-processing framework uses 4 GPU streams and morsel
sizes of 16 Ki tuples for CPU and 1 Mi tuples for GPU. Our
experiments were conducted on a 10-core i9-7900X with
13.75 MiB L3 cache and 32 GiB main-memory. We always
use all 10 cores. As GPU, we used one GeForce GTX 1080
with 8 GiB memory. We used Fedora 28 with CUDA 10.1 and
driver version 418.56.
In this section, we first evaluate the performance of our

fluid co-processing framework. Afterwards, we investigate
the influence of a varying pipeline cost cP and cardinality of
the inner relation on the query time, followed by a discussion
of the influence of the number of streams on the performance.
Last but not least, we discuss the scheduling behaviour of
our fluid co-processing framework.

4.1 Fluid Co-Processed Join
The effectiveness of early pruning depends on the selectivity
of the join itself. The more tuples eliminated by the join, the
more effectively can a Bloom filter prune them already in
the scan. Therefore, we evaluated the overall performance
of the join (probe) pipeline over varying selectivity. Figure 5
visualizes our results.

We noticed that, during CPU-only execution (CPU, BF ) the
benefit of using the Bloom filter to prune is limited, compared
to CPU-only execution without a Bloom filter (CPU, no BF ).
This is due to the size of the Bloom filter. As the Bloom filter
exceeds the CPU caches, it introduces additional cachemisses
and put further stress on the memory subsystem. With rising
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Figure 6: GPU+CPU joins are faster but CPU-GPUdata
transfers appear to slow joins down. Depicted is only
(per-tuple) join time for surviving tuples. With low se-
lectivities, join time is less important for query time
and it spikes due to small vector overhead.

selectivity (less tuples pruned) the benefit of early filtering
goes to zero and only the filtering overhead, additional cache
misses in particular, remains.
The GPU+CPU execution (GPU+CPU, BF ), however, ben-

efits from the GPU’s additional computational power and
memory bandwidth. For low selectivities this leads to a per-
formance improvement up to 3× compared to the non-Bloom
CPU implementation and roughly 2× compared to the CPU-
only version. With rising selectivity, similar to the CPU-only
scenario, the benefit of early pruning gradually disappears.
However, the risk of slowing down the join is much lower
because the Bloom filter is much faster i.e. it uses CPU and
GPU in parallel.
We now focus on the performance of the join. Figure 6

displays the join time with the probe key column already re-
siding in the GPU memory (GPU+CPU, BF (cached)). Caching
the keys speeds up the GPU pipeline (Bloom filter and send-
ing results back) which, in turn allows more tuples to be
processed on GPU. This leads to a significant speedup of up
to 27% which additionally boost the already existing perfor-
mance gain. However, caching the keys only allows the GPU
to consume ≈ 5% more tuples (Figure 8) and is therefore
not explaining the 27% boost (the lion’s share, 95%, did not
change). This indicates that the memory transfer from CPU
to GPU (HtoD) and back (DtoH) is not free and affects the
memory bandwidth of the host (CPU).

4.2 Scaling Pipeline Cost and Inner Relation
In joins, the efficiency of early pruning using Bloom depends
on a variety of factors: (a) the size of the inner (build) relation,
(b) the size of the Bloom filter, (c) the number of hash func-
tions k , (d) the Bloom filter type (naive, blocked, counting
etc.) and (e) cost of the pipeline cP .
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0 50 100 200 400 800
512 Mi n/a n/a (2 Gi, 3) (2 Gi, 3) (4 Gi, 6) (4 Gi, 6)
256 Mi n/a n/a (2 Gi, 6) (2 Gi, 6) (2 Gi, 6) (2 Gi, 4)
128 Mi n/a (512 Mi, 2) (1 Gi, 4) (1 Gi, 4) (2 Gi, 6) (2 Gi, 6)
64 Mi n/a (512 Mi, 4) (512 Mi, 4) (512 Mi, 4) (512 Mi, 4) (1 Gi, 6)
32 Mi (64 Mi, 1) (64 Mi, 1) (128 Mi, 2) (256 Mi, 4) (512 Mi, 6) (512 Mi, 6)
16 Mi (64 Mi, 3) (64 Mi, 3) (64 Mi, 3) (128 Mi, 4) (128 Mi, 4) (256 Mi, 6)
8 Mi (64 Mi, 4) (64 Mi, 4) (64 Mi, 4) (64 Mi, 4) (64 Mi, 4) (64 Mi, 4)
4 Mi (32 Mi, 4) (32 Mi, 4) (64 Mi, 4) (64 Mi, 5) (64 Mi, 5) (64 Mi, 6)
2 Mi (32 Mi, 7) (32 Mi, 7) (32 Mi, 7) (32 Mi, 7) (32 Mi, 8) (32 Mi, 8)
1 Mi (32 Mi, 7) (32 Mi, 7) (32 Mi, 7) (32 Mi, 7) (32 Mi, 7) (32 Mi, 7)

(a) CPU
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0 50 100 200 400 800
512 Mi (4 Gi, 5) (4 Gi, 5) (4 Gi, 5) (4 Gi, 5) (4 Gi, 5) (4 Gi, 5)
256 Mi (4 Gi, 10) (4 Gi, 10) (4 Gi, 10) (4 Gi, 10) (4 Gi, 10) (4 Gi, 10)
128 Mi (2 Gi, 10) (2 Gi, 10) (2 Gi, 10) (2 Gi, 10) (2 Gi, 10) (4 Gi, 13)
64 Mi (1 Gi, 10) (1 Gi, 10) (1 Gi, 10) (1 Gi, 10) (2 Gi, 14) (2 Gi, 14)
32 Mi (512 Mi, 8) (512 Mi, 10) (512 Mi, 10) (1 Gi, 14) (1 Gi, 14) (1 Gi, 14)
16 Mi (128 Mi, 5) (256 Mi, 10) (512 Mi, 8) (512 Mi, 14) (512 Mi, 14) (512 Mi, 14)
8 Mi (64 Mi, 5) (64 Mi, 5) (128 Mi, 9) (128 Mi, 10) (128 Mi, 10) (128 Mi, 10)
4 Mi (32 Mi, 5) (32 Mi, 5) (32 Mi, 5) (64 Mi, 9) (64 Mi, 10) (64 Mi, 10)
2 Mi (32 Mi, 10) (32 Mi, 10) (32 Mi, 10) (32 Mi, 10) (32 Mi, 10) (32 Mi, 10)
1 Mi (32 Mi, 15) (32 Mi, 15) (32 Mi, 15) (32 Mi, 15) (32 Mi, 15) (32 Mi, 15)

(b) GPU

Table 1: Performance-optimal Bloom filter configurations (m, k) for combinations of inner relation cardinality
and additional pipeline cost cA with Bloom filter sizem (bits) and k hash functions. GPU Bloom filters efficiently
support larger filters with more hash functions (k up to 14-15) than CPU Bloom filters.
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0 50 100 200 400 800
512 Mi n/a n/a 14.8% 14.8% 2.8% 2.8%
256 Mi n/a n/a 2.8% 2.8% 2.8% 2.7%
128 Mi n/a 15.6% 2.7% 2.7% 0.2% 0.2%
64 Mi n/a 2.7% 2.7% 2.7% 2.7% 0.2%
32 Mi 39.3% 39.3% 15.5% 2.7% 0.2% 0.2%
16 Mi 16.1% 16.1% 16.1% 2.7% 2.7% 0.2%
8 Mi 4.1% 4.1% 4.1% 2.7% 2.7% 2.7%
4 Mi 4.1% 4.1% 0.8% 0.8% 0.8% 0.2%
2 Mi 0.8% 0.8% 0.8% 0.8% 0.2% 0.2%
1 Mi 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

(a) CPU

Additional Pipeline Cost cA
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0 50 100 200 400 800
512 Mi 2.3% 2.3% 2.3% 2.2% 2.2% 2.2%
256 Mi 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%
128 Mi 0.1% 0.1% 0.1% 0.1% 0.1% < 0.1%
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Table 2: Performance-optimal Bloom filter false-positive ratio (accuracy) for combinations of inner relation car-
dinality and additional pipeline cost cA - corresponding to the configurations in Table 1. Performance-optimal
GPU Bloom filters achieve a higher accuracy than CPU Bloom filters. Higher additional pipeline cost cA leads to
more accurate Bloom filters.
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Figure 7: Influence of inner relation’s cardinality and
pipeline cost cP on query time at 1% selectivity. Col-
ors represent the total runtime (s). Variations in cP
are simulated through an additional pipeline cost cA.
Bloom filters on GPU allow to accelerate the upper
half (large inner relations) and are able to speed up
expensive pipelines (high cP ).

In this experiment, we demonstrate the effects of the pipe-
line cost cP and inner relation size on the run time. For
each combination of CPU/GPU, inner relation and cP , we

determined the performance-optimal Bloom filter, as defined
by Lang et al. [15], using a hardware-calibrated cost-model.
Note that a Bloom filter might not always provide a benefit.
In particular, a combination of a small cP and an expensive
Bloom filter might lead to inferior performance. We marked
such cases as invalid values.

Bloom Filter Configurations & Accuracy. Using the cost-
model, we obtained performance-optimal Bloom filter con-
figurations for a variety of inner relational cardinalities (i.e.,
join build size n) and pipeline cost. For the latter, we increase
the basic scan-filter-join cost cP by adding an additional cost
cA that corresponds to operators (such as aggregations or
other joins) that would be in between the scan-filter and
the join. The Bloom filter size m and the number of hash
functions k for each filter is shown in Table 1. We noticed
that, compared to the CPU, the GPU efficiently allows larger
Bloom filters and roughly 2× more hash functions. On the
CPU, such configurations would suffer from low memory
throughput and high computational cost for the hashing.
The false-positive ratio f of each filter is depicted in Ta-

ble 2. With increasing pipeline cost, higher cA, we noticed
a trend to higher accuracy. The reason is that, with a high
penalty for a false-positive, it makes more sense to pay the
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price of a more expensive Bloom filter with higher precision
to prevent many false-positives.

Compared to CPU Bloom filters, GPU Bloom filters tend to
have a very low false-positive ratio because (a) the GPU has a
higher memory bandwidth (less penalty for larger filters) and
(b) more computational power - hence a GPU can compute
more hash functions than a CPU, before becoming compute-
bound rather than memory-bound. A configuration with size
m=4GB and k=14 hash functions is not practical on a CPU,
but can be performance-optimal on a GPU.

Bloom Filter Lookup Performance. After determining the
optimal Bloom filters, we ran the experiment. Figure 7 vi-
sualizes our results. The lookup performance of CPU-only
Bloom filters, as visible in Figure 7a, is more sensitive to the
size of the build relation i.e. fast lookup is only achieved for
Bloom filters that fit into cache. Consequently, the benefits
of early pruning decreases with the Bloom filter size, as the
lookup becomes more expensive with increasing build sizes.
In contrast to CPU-only filtering, the GPU+CPU Bloom

filtering (see Figure 7b) is much less sensitive to the build
size, and consequently the Bloom filter. This allows efficient
pruning in selective joins even for large dimension tables
(i.e. larger inner relations).

Higher pipeline costs (cP+cA) tend to justify more accu-
rate Bloom filters. The early pruning becomes more costly in
more accurate filters, but if offset by the much more expen-
sive pipeline cost, that can be saved for every pruned tuple.
We notice again that the overhead of more accurate Bloom
filters on GPU+CPU is much lower than on CPU and, hence,
allows much more effective pruning.

4.3 Optimal Number of Streams
In our fluid co-processing, the term stream refers to a work
queue, where the CPU enqueues tasks for the GPU, such
as kernel executions and memory transfers from the host
to the device (HtoD) or from the device back to the hosts
memory (DtoH). Modern GPUs are capable of performing
two simultaneous (DMA) memory transfers, one in each
direction. At the same time the GPU can execute kernels.
Due to the fact that the streams are processed sequentially,
a co-processing system needs multiple concurrent streams,
associated with the same GPU, to overlap memory transfers
and kernel execution and thus to maximize performance. In
our query, each stream delivers tuples to the GPU, probes
the Bloom filter, and sends the resulting bitmap back to the
host memory. We aim to find the lowest number of streams
which (a) keeps the GPU busy and (b) leads to the lowest run
time. Therefore, we executed our co-processed join query
with a selectivity of 1% on 1 billion tuples and measured the
fraction of tuples sent to the GPU (GPU Utilization), as well
as the runtime of the probe pipeline.
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Figure 8: More than 4 streams do not provide a better
GPU utilization.
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Figure 9: Influence of more than 2 streams onto total
query runtime is negligible.

GPU Utilization. The results are visualized in Figure 8a.
We noticed that GPU utilization heavily depends on the num-
ber of streams. For only one stream, we can only filter up
to ≈ 80% of the tuples on the faster device (the GPU) and,
hence, leave resources idle. With lower selectivities this ef-
fect is more extreme. However, with more than 2 streams
we noticed that almost all (> 98%) are being filtered by the
GPU. When using 4 or 8 streams, we observed a better be-
haviour for lower selectivities (≤ 5%). However, for higher
selectivities we measured a degraded utilization. This indi-
cates that, besides memory footprint, there is also CUDA
overhead involved. We also noticed that using more streams
are not necessarily the better choice for GPU utilization, as
compared to using 4 streams, 8 streams lead to inferior GPU
utilization. We argue that, in our case, 4 streams appears to
be the optimal choice, as it provides high GPU utilization for
low selectivities, as well as, negligible degradation for high
selectivites.

When the keys are cached on the GPU, see Figure 8b, we
noticed similar behaviour. However, as the keys do not need
to be transferred to the GPU (i.e. GPU kernels are faster), we
measured slightly higher GPU utilization.

Runtime. In Figure 9 we plotted the runtime of the probe
pipeline with a given number of streams. For 1 stream, we
observed a penalty because the GPU is not fully utilized.
For 2 or more streams, we did not notice any significantly
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Figure 10: Total runtime (s) w.r.t. morsel sizes. Large
morsels worsen load-balancing and leave resources
idle. Small GPU morsels lead to additional overhead.
improved runtime. Hence, for query runtime 2 to 4 streams
appear to be the optimal choice.

Optimal number of steams. We found that more (than 4)
streams neither improve query performance nor GPU uti-
lization. As each stream materializes part of the relation,
the memory footprint scales with the number streams and,
hence, a high number of streams will inflate the footprint
of the query. Therefore, we conclude that 2 to 4 streams are
enough to (a) keep the GPU busy and (b) lead to the optimal
runtime.

4.4 Optimal Morsel Sizes
The performance of our fluid co-processing strongly depends
on the morsel sizes used for CPU and GPU work. The choice
of morsel sizes is typically a trade-off between load-balancing
behaviour and scheduling overhead as small morsels lead to
good load balance between workers but higher scheduling
overhead, and vice versa. Hence, the optimal morsel sizes is
the smallest one which still allows efficient execution. We,
therefore, experiment with various combinations of morsel
sizes for CPU and GPU. Our results can be seen in Figure 10.

We noticed that too small CPU morsels increase total run-
time as they incur higher scheduling overhead. Too large
CPU morsels also increase the runtime as they leave re-
sources idle (most workers are done whereas the last ones
are still processing their large morsels). Similarly we noticed
a tendency that small GPU morsels incur additional schedul-
ing and GPU-specific overhead, i.e. GPU-internal scheduling
and less efficient data transfers lead to lower throughput.
In the other extreme large GPU morsels fully utilize GPU
resources but leave CPU resources idle.
We found that 16 Ki tuples for CPU and 1 Mi tuples for

GPU are sufficient to allow efficient processing and are, there-
fore, the optimal choice in our case.

4.5 Scheduling Behaviour
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Figure 11: Timeline with 1 GPU+CPU worker.
GPU+CPU worker is mostly busy issuing GPU work.
Depicted are 6 out of 10 workers. Thickness of the
bars Post GPU Join and CPU Bloom + Join represents
their processing speed (higher means faster).
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Figure 12: Timeline with 2 GPU+CPUworkers with 5%
selectivity. SchedulingGPUwork is evenly distributed
over the 2 worker threads. Depicted are 6 out of 10
workers. Thickness of the bars Post GPU Join and CPU
Bloom + Join represents their processing speed (higher
means faster).

Our fluid co-processing schedules tasks dynamically. To
give an insight into the scheduling decisions being made, we
ran the same experiment as in Section 4.1, profiled scheduling
decisions and plotted onto a timeline. First, we discuss the
behaviour of our prototype with only 1 GPU+CPU worker
and, afterwards, the behaviour with 2 GPU+CPU workers.

1 GPU+CPU Worker. We ran the experiment for three dif-
ferent selectivites (1%, 5% and 10%). Figure 11 visualizes the
results we obtained. We noticed that the 1 GPU+CPU was
mostly busy issuing GPU work (in the following experiment
we parallelize this part using 2 GPU+CPU workers).

At 1% selectivity (Figure 11a), we observed that most time
is spent on the CPU Bloom + Join. The reason is that the GPU-
accelerated pipeline (Post GPU Join) runs in negligible time
as it eliminates 99% of tuples in a very lightweight fashion.
The remaining time each worker is trying to prevent going
idle by "stealing" CPU morsels and executing the CPU-only
pipeline.
When moving to 5% selectivity (Figure 11b), we found

that there is roughly an equal amount of time spent on the
GPU-accelerated and the CPU-only pipeline.
Moving to 10% selectivity (Figure 11c), we observe the

opposite of the 1% case: Most time is spent on the GPU-
accelerated Join (Post GPU Join) because the join, includ-
ing fetching payloads, is very expensive. However, we also
noticed a startup lag for the GPU-accelerated Join. This is
caused by the initial latency of issuing GPU work until the
results from the GPU are received.

2 GPU+CPU Workers. In the previous experiment, it ap-
peared that the one single GPU+CPU worker might be over-
loaded. Therefore, we modified the experiment and paral-
lelize issuing GPUwork over 2 GPU+CPUworkers which can
concurrently schedule GPU work. The results can be seen
in Figure 12. We noticed that allowing multiple GPU+CPU
workers tends to worsen initial load-balance (at the start
of the query). The cause of this behaviour is the preference
of GPU+CPU workers to issue GPU work. When creating
GPU+CPUworkers, eachwill first schedule GPUworkwhich
involves locking inside the CUDA library. However, we want
to highlight, that our fluid co-processing framework is still
able to achieve load-balance and, hence, the negative influ-
ence of such delayed starts, or other interference, is signifi-
cantly reduced.

5 RELATEDWORK
Co-processing can be seen as an intra-query parallelization
problem where different devices work together. Many data-
base systems use Volcano parallelism [9] to adapt to modern
multi-core hardware. Notable examples are SQLServer [16],
Oracle [14] and Vectorwise [23]. Recently, it found applica-
tion in Co-processing, as HetExchange [6] which allows to
offload whole pipelines. Volcano originally became popular
because it allowed an easy integration of parallelism into
existing single-threaded systems by abstracting the paral-
lelization into Exchange operators. This alsomeans that paral-
lelization and partitioning decisions have to bemade at query
optimization time rather than dynamically at query runtime.
This, consequently, creates imbalance between threads and
leaves resources idle. These issues have been fixed through
dynamic morsel-driven parallelism [17]. It splits table ranges
into tasks. These tasks are inserted into a global queue from
which multiple workers can consume and process this task.
Recently, a dynamic virtual machine architecture was pro-
posed to allow cross-device load-balancing [10]. This idea
inspired our fluid co-processing framework to perform adap-
tive work placements for different devices, but instead of
placing the work on the unit, here we adapt the granularity
of work per device.
A number of GPU co-processing database systems have

been developed, most notably Ocelot [12], CoGaDB [5] and
HAPE [7]. Ocelot was proposed as a hardware-oblivious data-
base engine to abstract away operators from CPU and GPU
devices [12]. CoGaDB [5] places operators on devices at run-
time, and allows pipeline parallelism. However, compared
to our Fluid Co-processing, CoGaDB’s operator placement
is neither fully dynamic, nor elastic. HAPE [7] is based on
HetExchange [6]. Entire pipelines are compiled for different
architectures (CPUs and GPUs). Thereby, CPUs and GPUs
perform the same tasks and Exchange operators “route” the
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tuples between the executing devices. In contrast, our pro-
totype offloads different tasks (i.e. Bloom filter probe) to a
different device, that eventually assists query execution on
the CPU which leads to fully dynamic partitioning.
Our case study uses Bloom filters to accelerate selective

joins. Bloom filters were introduced by Bloom [2]. Similar
data-structures for approximate membership queries have
been discovered. Notable examples are Quotient filters [1],
Cuckoo filter [8] and Morton filters [4]. However their per-
formance on GPU has not been studied deeply.

6 CONCLUSIONS & FUTUREWORK
This work (finally) identified in Early Pruning of Selective
Joins using Bloom filters a relevant database workload where
CPU database systems can be significantly accelerated by
GPU co-processing. We realized this in a prototype of the
dynamic, adaptive, heterogeneous Fluid co-processing frame-
work. This framework splits pipelines into pipeline frag-
ments, such that a pipeline can be co-processed on different
devices. It also allows multiple equivalent pipeline fragments
to co-exist, so certain tuple ranges use a CPU-only pipeline,
whereas others follow a CPU-GPU pipeline consisting of mul-
tiple fragments. Its shared work queue is inspired by the elas-
tic and dynamic co-processing model based of morsel-driven
parallelism [17], but allows for different morsel granularities,
tailored to each device. Note that the queue-based architec-
ture also helps solve the problem of handling concurrent
queries on a GPU, as the queue can coordinate scheduling
of morsels belonging to different queries; and if the GPU is
too busy, queries can just execute their morsels mostly (or
completely) on the CPU-pipeline.

To measure the effectiveness of our techniques, we imple-
mented a simple multi-threaded join query. Our experiments
show performance improvements of up to 3× by dynamically
offloading Bloom filtering.
In the future, we plan to deeply investigate the design

space of GPU-based Bloom filtering; as our work so far just
increases the Bloom filter block size to the correct GPU cache
line size. We are experimenting with multiple GPU-specific
Bloom filtering optimizations as well.
As for the Fluid Co-Processing framework, we intend to

mature our prototype into a system that can execute generic
and concurrent queries and perform adaptive offloading to
heterogeneous hardware [11].
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