
Compact Hash Tables

Tim Gubner
CWI, DA

Peter Boncz
CWI, DA

Hash tables are a crucial data structure for accelerating database operations
such as Join and GroupBy. In analytical queries hash tables can grow quite
large. As they trade off memory usage against access performance, hash tables
tend to be sparsely filled to allow short probing sequences (in the average case).

Additionally their size heavily depends on amount of columns stored inside.
For example relational Join operations need to store the whole inner relation
and GroupBy operations store the keys and aggregates.

Caused by the mere size, hash tables tend to be located low in the memory
hierarchy (main memory, disk). We believe that reducing the size of each row
will speed up hash table access by allowing to fit more useful data in cache, as
well as reduce memory usage.

In our talk we will focus on reducing the per-row overhead by suppressing
unused bits in the prefix of each value based on its domain. Additionally we will
present two more elaborate techniques for shrinking size of hash table’s active
working set.

(1) We are going to introduce Speculative Packing which splits the hash table
into two areas. One area will be frequently used during query execution and is
optimized for the average case. The other area will store rarely used values.

(2) These techniques only work effectively for integers and mainly exclude
strings. For strings Speculative Packing can be extended using Smart on-the-
fly Dictionaries which store often used strings and provide indices to unique
strings. These indices are stored in the regularly accesses area of the hash table,
whereas strings that are not in the dictionary are stored in the rarely accessed
area.

Note that this is ongoing work and this talk will concentrate on the under-
lying ideas. However the reduction of memory usage in the TPC-H benchmark
seems promising.

1


