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ABSTRACT
Users often want to run analytics on their OLTP databases, to avoid
costly and cumbersome Extract-Transform-Load (ETL) processes.
Typically, analytical queries run rather slow on OLTP DBMS, mak-
ing Hybrid Transaction/Analytic Processing (HTAP) solutions pop-
ular. One possible solution is to add an accelerator (for analytics)
to the already existing OLTP DBMS.

Typically, analytical systems, especially for the cloud, focus on
extremely large datasets ("exa-scale") and distributed query execu-
tion (across multiple machines). We argue that many customers
do not have large enough datasets to justify expensive multi-node
DBMSs. Compared to single-node systems, such multi-node sys-
tems typically come with a baseline drop in performance (but might
scale), as they need to introduce data transfers across the network.

For this reason, we propose Hermes as cloud-native, but single-
node, accelerator for MySQL. Hermes speeds up analytical queries
by, often 2-3, orders of magnitude and outperforms competing
systems by up to 5× (including multi-node systems). We achieve
this by keeping Hermes relatively lean and focusing on the core
features required. In the paper we describe Hermes’ architecture,
data storage and integration with MySQL as well as Hermes’ query
engine. Importantly, Hermes provides the highest degree of data
freshness. If data is not replicated yet, Hermes waits. The waiting
times, however, are practically negligible (single digit vs. three digit
milliseconds).

We evaluate Hermes on TPC-H as well as micro-benchmarks.
Besides the aforementioned improvements, our replication mech-
anisms achieved high and stable throughput rates of up to 60k
changes per second, leading to low waiting times.

In summary, Hermes is a lean accelerator for MySQL. Its single-
node design keeps costs for users low and performance high. Ad-
ditionally, Hermes guaranteeing data freshness and compatibility
with MySQL (both, Hermes and MySQL, return the same result).
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Figure 1: Hermes overview: Hermes acts as accelerator for
analytical workloads. Changes fromMySQL are continuously
replicated to Hermes, which allows to answer queries on
the most recent state of the database. Our data resides in
main-memory, therefore we periodically checkpoint data
to Object Storage. In case of node failure, we could replay
changes from MySQL, but directly restoring the Main store
from checkpoint is obviously significantly faster. (In this
paper, we only refer to themain-memory-only setup. Hermes
allows other setups as well. Most notably data can reside on
Object Storage but cached in main-memory.)

1 INTRODUCTION
Customers often use OLTP database offerings in the cloud. However,
frequently they also want to run analytics on the same dataset.
Commonly, the big obstacle is that moving data from transactional
to analytical (OLAP) systems, so called Extract-Transform-Load
(ETL) is rather time-consuming as well as it is tricky to get 100%
correct and performant.

Hybrid Transactional/Analytical Processing (HTAP). From
the user perspective, it understandable that they often choose a sys-
tem that allows both, fast transactions and fast analytical queries, a
so called Hybrid Transactional/Analytical Processing (HTAP) sys-
tem. There is a wide range of many different architectures for HTAP
systems, from single-node to multi-node or systems that grew from
different starting points (OLTP system extended to HTAP, HTAP
from scratch, or OLAP with optimizations for OLTP).

The Case against Complex Multi-Node Distributed Sys-
tems. Recent decades have seen the creation of more and more
complex DBMS sold as the "scalable" silver bullet for every use-case
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from the tiny "mum and pop" shops to extremely large "exa-scale"
workloads (e.g. Telecom data processing or the biggest web shops
on this planet). These DBMS are often optimized for large multi-
node clusters to deal with the enormous amount of data. A few
of this optimizations include fancy partitioning and replication
schemes, exploiting bleeding edge network technologies, as these
systems often transfer lots of data across the network.

However, frequently customer workloads are, neither extremely
large, nor do they require clusters with thousands of CPU cores and
petabytes of memory. If we, for example, look at the PublicBI work-
load [5, 22], a realistic workload, many tables are not extremely
large. In PublicBI most tables contain ≤ 1 M rows, only one ta-
bles few contain more than 100M rows [22]. However, queries are
frequently rather complex and, often, process string data [22]. Sim-
ilarly, in Snowset [21, 23], a realistic dataset released by Snowflake,
most queries read less than 1 TB.

Distributedmulti-node systems are typicallymuchmore complex
than single-node DBMS, as they require complex transaction han-
dling, smart data partitioning and failover1 techniques etc. More-
over, multi-node systems usually come with a drop in performance
for workloads that are not extremely-large, i.e. most customers.

Hermes – An Overview. In this paper, we present Hermes, a
cloud-native accelerator for analytical workloads on MySQL. Her-
mes continuously replicates the changes coming for MySQL while
allowing fast analytical queries. The resulting system, Hermes, im-
proves runtimes on analytical workloads by, typically, 2-3 orders of
magnitude on a single node and outperforms competing multi-node
systems (optimized for analytical workloads) by up to 4.6×.

Contributions. Our contributions are the following:
• We present an architecture for accelerating OLAP queries for

OLTP databases, MySQL in particular.
• We describe how our storage is optimized for both, fast data

modifications (insert/update/delete) as well as analytical queries.
• We reveal our novel lightweight mechanism to efficiently merge

Delta and Main store on-the-fly.
• We explain how to integrate an accelerator with MySQL. We

focus on how data and transactions can be replicated, how snap-
shots consistent withMySQL can be accessed andMySQL’s query
semantics can be kept.
Structure. The remaining paper is structured as follows: The

following section discusses necessary background as well as related
work. Afterwards, we introduce Hermes from the "500ft view",
followed by an explanation of how data is stored in Hermes, how
data is migrated from one storage level to another, how the stored
data is modified and how old data is cleaned up. Then, we reveal
how we integrated Hermes with MySQL and solved some of the
MySQL’s semantic quirky-ness inHermes, followed by a description
of Hermes’ query engine. Afterwards, we evaluate our Hermes
implementation, followed by a brief summary of the "takeaways"
and discussion of future work.

1Note that the more nodes a system has the more likely it is to fail, making failure
handling and failover techniques more important for multi-node systems.

2 BACKGROUND & RELATEDWORK
In this section, we describe necessary background as well as related
worked. We start by giving a brief glimpse into different architec-
tures for Cloud DBMS, followed by an introduction into different
techniques for parallelizing queries on multiple nodes. Afterwards,
we explain different systems and compare them to Hermes (this
work), first with single-node OLAP systems followed by Hybrid
Transactional/Analytical Processing (HTAP) systems.

2.1 Architectures for Cloud DBMS
SharedNothing. SharedNothing architectures partition data across
all nodes. Each node is responsible for its partition. As long as each
node stays within its own partition data access is cheap (local).
However, network transfers occur when accesses span multiple
partitions. In the cloud, Shared Nothing architectures are challeng-
ing, because Compute (nodes for transactions and queries) and
Storage (nodes storing data) cannot be scaled independently and
scaling will typically require costly re-partitioning of data.

Shared Storage. Shared Storage/Disk architectures rely one
global access to storage. For cloud systems, this allows scaling
storage without having the re-partition all data.

However, assuming the absence of a cache, each read/write
would lead to network transfers. Writes can possibly lead to multi-
ple transfers when replication is used (i.e. one per replica). For reads,
the number of network transfers can be reduced by introducing a
cache. But, a cache will lead to additional overhead for writes, i.e.
cache invalidation and cache coherency.

Single Node.Whereas Shared Nothing and Shared Storage ar-
chitectures, lead to costly network transfers, if data was stored on
a single node, there will be no additional access cost. This works
as long as all data fits into a single node. Importantly, with current
hardware a significant amount of data – terabytes – can fit into
a single node. We argue that many use cases can be handled by
a single node (Hermes) and, thus, does not incur costly network
transfers or re-partitioning costs.

2.2 Intra-Query Parallelism & Distributed
Query Execution

Distributed query execution is typically built around Volcano model
parallelism [8], i.e. they introduce special operators (Exchange)
to parallelize pipelines. One major advantage is that operators
can (mostly) stay unaware of parallelism. The parallelism model
allows range and hash partitioning as well as broadcasting (to all
partitions), initial partitioning as well as repartitioning (from e.g.
𝑁 hash partitions into𝑀 range partitions).

In general, Volcano-model parallelism works reasonably well on
a single machine [12]. On larger – many-core – systems, Volcano-
model parallelism tends to underperform against Morsel-driven
parallelism [16], which assumes a sharedmemory system and opera-
tors are aware of parallelism. Both use the same underlying building
blocks which are hash and range partitioning to redistribute data
across partitions 2.

2Morsel-driven parallelism also allows accessing shared data in e.g. in the probe phase
of a hash join all threads access the same hash table. Volcano-model parallelism allows
to broadcast data to all partitions.



Distributed Execution re-partitions frequently. For distrib-
uted systems, repartitioning is a costly operation as it requires data
movement across the network. Worse, repartitioning has to occur
rather frequently as well.

For example, if we join two tables (𝐴, 𝐵) on the columns 𝐴.𝑐1 =
𝐵.𝑐1 and group by 𝑐2. This requires partitioning twice: Once to
execute a distributed hash join (hash partition both sides on 𝑐1) and
a second time to group (hash partition on grouping key 𝑐2) 3. This
essentially requires us to transfer the larger table across the network
twice. Note that we can easily extend this example by adding more
joins on other columns. Unfortunately, analytical queries often
contain multiple with joins and group-bys and, therefore, costly
repartitioning we can occur rather often.

Skew. In our example it can also happen that 𝑐2 ends upwith only
fewer distinct values than the number of partitions. Consequently,
data will be distributed unevenly across partitions 4. In the extreme
case, 𝑐2 would only contain one value. On a cluster with 128 cores,
we could end up using only 1 core. While on a single node, we can
load-balance skew [9, 16], on a cluster load-balancing across nodes
will require additional data movement.

Takeaway. To summarize, distributed query execution, espe-
cially on analytical queries, frequently re-partitions data. The con-
sequence is:
Repeated re-partitioning precludes a cost and power efficient system.

2.3 Single Node Analytical DBMS
Hermes resembles a single node analytical system with optimiza-
tions for fast data modifications. Here, we compare to single node
systems optimized for analytical workloads:

DuckDB [7] and Vector/Vectorwise [26] are two systems using
Vectorized Execution [3] as well as support columnar data storage.

Similarly to both systems, Hermes also uses Vectorize Execution,
but the major differences are in Hermes’ data storage.

DuckDB adapted Hyper’s MVCC mechanism, as described by
Neumann et al. [18], to handle data modifications. Like Hermes,
DuckDB stores data in RowGroups. However, in DuckDB data
modifications also appear in the same RowGroups forcing them
to always contain versioning information (for each row). Hermes’
RowGroups only contain the data and a creation timestamp (of the
RowGroup) and modifications end up in the write-optimized Delta.

Vector/Vectorwise uses a positional delta (positional delta tree,
PDT) on top of its compressed columnar data store [11]. Changes
from the PDT are merged periodically into Vectorwise’s compressed
"main" store. During scans, the PDT(s) are merged on-the-fly, by
inserting/updating/deleting the decompressed vectors (cache-sized
columnar chunks) using the delta. This merge-style operation is
relatively cheap, because both stores are ordered by a row id. Her-
mes merges are even cheaper. We filtered updated rows from main
store and just append the Delta. There is no need to expand the
decompressed vectors (e.g. when a row is added in the middle). The
obvious disadvantage of our approach is that the result is unordered.

3In practice, one would try to store 𝐴 and 𝐵 already partitioned on 𝑐1 to avoid one
partitioning, but that is not always feasible (there could be similar joins on other
columns as well)
4That can also happen after hashing due to a bad hash function or as a result of the
birthday paradox that occurs during partitioning, or because processing one partition
happens to run slower/faster than others.

Also data modifications in Hermes, do not require traversing a tree
(PDT). They either append at the end (INSERT) or only require find-
ing the physical row (lookup in RowIdMap) and modifying that
(UPDATE, DELETE).

2.4 Hybrid Transactional/Analytical Processing
(HTAP) DBMS

The resulting combination of MySQL with Hermes as an accelerator
for analytical workloads acts as a Hybrid Transactional/Analytical
Processing (HTAP) system. Therefore, we focus on HTAP.

PolarDB-IMCI. PolarDB is a famous DBMS available in the Al-
ibaba cloud and quite possibly Alibaba’s top database product. With
PolarDB-IMCI [24], PolarDB added an accelerator for analytical pro-
cessing to their transactional database. To enable IMCI, one needs to
mark the specific set of columns as KEY_COLUMN_INDEX [24]. Com-
pared to IMCI, we can offload transparently, by setting Hermes as
secondary engine, without requiring schema changes.

To replicate data PolarDB uses their REDO log [24]. We, instead,
use the binary log (binlog). The data in PolarDB is organized in
insertion ordered whereas Hermes organizes data either unordered
(Delta) or ordered by row id (Main store). In addition PolarDB maps
primary keys to row ids via an LSM tree [24] requiring 𝑂 (log𝑁 )
steps to find a row id. In Hermes, we use the row ids from MySQL.
It can happen that in the Delta we need to lookup the physical
location of a row, but this is a hash look and requires constant time
(𝑂 (1)).

Similar to Hermes, PolarDB uses an engine with Vectorized Exe-
cution [3] and Morsel-driven parallelism [16].

On TPC-H, PolarDB underperforms Hermes. Note that PolarDB
uses multiple machines, whereas Hermes uses a single machine.

ByteHTAP.A system that shares some similiarities withHermes
is ByteHTAP [4]. ByteHTAP combines an OLTP engine with an
dedicated engine for OLAP. Similar to Hermes, ByteHTAP uses log-
based replication to keep the OLAP data fresh. Also both, Hermes
and ByteHTAP, split the data storage into Main store and Delta
and allow merging both online (during the scan) as well as offline
(asynchronously, Update Propagation).

However, there are notable differences: When merging Delta and
Main during the scan (on-the-fly), ByteHTAP has two choices (a) it
can for every row in theMain store checkwhether that row has been
deleted (or updated), leading to one hash lookup for every row, or (b)
try collect all changed rows from the Delta(s), compute a selection
vector from rows from theMain surviving and only fetch these from
the Main store. Tactic (a) is suited for small amounts of changes,
whereas (b) handles lots of changes. Our merging strategy is similar
to (a) but more lightweight: We only require a merge-syle algorithm
based on row ids (integers), no hash lookup on the primary key
(no hashing cost, no hash conflicts, no random memory lookups).
Hermes does not support a similar tactic (b), because we assume
that < 10% of the table has changes and, thus, rather eagerly flush
data to the intermediate Deltas (which ByteHTAP does not have).
Furthermore, it seems that ByteHTAP requires users to specify
partitioning keys to enable intra-query parallelism across multiple
machines and relies on Flink’s parallelism model within a machine.
Hermes features load-balanced Morsel-driven parallelism, but only
utilizes a single machine.



Other Systems.Another well-known system is SAP HANA [20]:
Like Hermes it contains multiple storage layers (both have 3), from
write- to read-optimized. HANA, exploits dictionary-encoding for
every value using an ordered global dictionary (per column). While
this improves compression ratios, in some cases, this can lead to
significant re-encoding effort, essentially forcing a complete rewrite
of a compressed column. Our compression is limited to RowGroups,
whenever adversarial values are inserted, they only affect the cur-
rent RowGroup and not the complete Main store.

Oracle Database In-Memory [13] supports both row and column
store. Users are required to specify whether to offload a specific
table/schema/... to the column store (via keyword INMEMORY). We
transparently offload data into Hermes. Like In-Memory we can
populate Hermes with data without any downtime, furthermore
does our column store involve compression. A major difference is
that Hermes does not require analyzing a transaction journal for
accessing data, instead we utilize our Delta store that allows us to
relatively efficient read certain versions. Furthermore, In-Memory
does not seem to be able to handle the corner case, where uniformly
distributed changes would cause the "population" process (moving
data fromDelta to compressed column store) to essentially re-create
all RowGroups. Specially this corner case, forced us to have three
storage layers (row-based Delta, columnar Delta, Main store).

SQLServer Column Store Indexes [14, 15] stores data in columnar
and compressed fashion (like Hermes). A compressed columnar
index in SQLServer can also be updated via a Delta store and a
bitmap for deleted rows [14]. Like Hermes, updated or inserted rows
will enter the Delta store. A major difference is that the Delta store
in SQLServer uses a different index structure (B-tree vs. Hash table).
Additionally, deletes end up in a Delete bitmap in SQLServer’s Main
store. Like in Hermes, scans in SQLServer have to ignore changed
data. However, in Hermes it is a cheap merge-based operation on
a dense array of integers while in SQLServer it is a lookup into a
sparse Delete bitmap. Updates in SQLServer become Deletes and
Inserts, which is probablatic when some rows are updated very
frequently. In SQLServer, this would require eleminating many
inserts (that stem from updates) during scans. Hermes on the other
side, will always have the newest version either in the Main store,
or directly in the Delta (at head of the version chain).

3 HERMES
Often, regular customers, do not require solutions for fast analytics
on petabytes of data. Since modern servers can easily stored ter-
abytes of data (most of that often into main memory), we believe a
single-node system is not only faster but also more cost-effective in
most cases. We can skip architectural complications introduced by
multi-node systems as well as avoid costly network transfers, which
for distributed systems happen very frequently (see Section 2.2).
Therefore, we chose to design Hermes as a single-node cloud-native
OLAP system, which is used to enable fast analytics on MySQL.

In the following, we describe high-level architecture of Hermes
shown in Figure 1 from multiple perspectives. Here, we focus on an
overview, more detailed explanations of specific components can
be found in dedicated sections. We first explain the path a query
takes through the system, then briefly describe how changes from

MySQL reach Hermes. Afterwards, we describe how checkpointing
works in Hermes.

Query. The user issues a SQL query to MySQL. MySQL parses,
analyzes and optimizes the query. If the cost of the query exceeds
a certain threshold, we decide to execute the query on Hermes
(analytical queries are typically more costly, analyze more data and
have complex query plans). Hermes evaluates the query and fetches
data from the respective data store. We try to fit most data into the
Main store, which is optimized for large analytical reads. If the data
contains recent changes, not yet integrated into the Main store,
Hermes also needs to read the Delta store. Once Hermes completed
the query it returns the result back to MySQL, which then returns
the result to the user.

Replication. To allow operating on the most recent data, we
continuously replicate all changes from MySQL to Hermes. Tech-
nically, we subscribe to the binary log stream. Whenever an event
arrives, we analyze it and transform the event into an operation
on the Delta store. We periodically clean up the Delta store by
propagating table updates to the Main store (Update Propagation).
Before applying the log stream, we first try to ingest the current
(committed) state of the table. We fetch chunks of the table from
MySQL and transform them and directly insert them into the Main
store (instead of the Delta).

Checkpoint &Restore.While it is possible to fully replicate the
state of MySQL by re-ingesting and re-applying the log stream, it is
extremely costly. Therefore, we decided to periodically checkpoint
the Main store and write the changes to Object Storage. Check-
pointing the Main store has certain benefits: (1) The Main store
is compressed. As a consequence, less data needs to be backed
up. (2) The Main store is only updated, during Update Propaga-
tion or Garbage Collection. thus minimizing contention on latches
(checkpoint will take read latches and do not conflict with data
modifications or read transactions).

To checkpoint a table, we backup only its RowGroups, the hori-
zontal partitions of the Main store of a table. For each RowGroup,
we maintain a version timestamp. If the timestamp is newer (higher)
than the last checkpoint, the RowGroup got modified in between
and we need to back it up again. Note that this can only happen
when Update Propagation applies changes from the Delta, which is
unlikely to modify a lot of RowGroups.

Upon restore, we load checkpoint in bulk into Main store.

3.1 Node Failure
In case the node hosting Hermes fails or Hermes crashes, queries
and transactions on MySQL can just continue without Hermes.
When the node returns, Hermes will reconnect to MySQL and
replicate the state from MySQL, either from scratch or from the
last checkpoint.

Interestingly, one could connect multiple Hermes instances to
MySQL to either allow a transparent failover (in case Hermes fails)
or to parallelize the incoming analytical workload across multiple
nodes (inter-query parallelism).

4 DATA STORAGE
One of the major challenges in the development of Hermes has
been to combine fast insert/update/delete (modification) with fast



analytics. Typically both, fast modifications and fast analytics, lead
to contradicting requirements.

For analytics, columnar data storage combined with lightweight
compression seems paramount. Unfortunately, in compressed col-
umn stores it is very hard to modify rows. For example, updat-
ing a single row, supposed we already know its position, would
require decompressing, updating the values (in a buffer) and re-
compressing, with the hope that the original compression scheme
is not affected too much (data properties might drift away from
chosen compression scheme).

On the other hand, data layouts optimized for fast modifications
are sub-optimal for analytics. For example, a reading only one
column essentially requires scanning the whole table.

We chose the, arguably, typical answer to this question: We
use a columnar and compressed data store for analytics (Main
store) and an uncompressed row-oriented delta (Delta store) for
modifications (later in the paper, we introduce the Columnar Delta
as an intermediate step row-based Delta and Main store).

First, we explain the Main store, where the lion’s shared of data
is stored in a compressed and read-optimized fashion. Afterwards,
we describe the row-oriented Delta store. Then, we present how
inserts, updates, deletes and scans work on the combined data store.
Afterwards, we justify the need for multiple levels of deltas (for
us 2, because uniform data modifications would lead to changes in
many RowGroups), followed by a description of how we move data
from the Delta store(s) to the Main store (Update Propagation). Last,
but not least, we disclose how Hermes’ garbage collection works.

4.1 Main Store
The Main store is optimized for analytical workloads. Data is parti-
tioned horizontally into RowGroups. RowGroups are split, further,
into PaxGroups, PaxGroups resemble PAX [1] data layout on a
subset of columns. Within PaxGroups, we store data in a columnar
fashion and compressed. This is illustrated in Figure 2.

Allocation Unit (AU).We allocate physical memory for each
PaxGroup (Allocation Unit, AU). While a RowGroup can consist of
multiple PaxGroups, we try to minimize the number PaxGroups
and only use multiple PaxGroups when rows are extremely wide.

Physically, this limits the size of a PaxGroup to 1 GiB (self-
imposed limit). Only if it is impossible to fit 16K rows into an
Allocation Unit, we consider splitting into multiple PaxGroups.

CompressedColumnar Storage.Within a RowGroup, we store
data in a columnar fashion. To reduce storage footprint, we choose
to compress each column. Hermes supports lightweight compres-
sion schemes similar to Heman et al.[25]. For integers and decimals,
we support: Frame-of-reference and Dictionary compression with
exceptions. For strings, we only support Dictionary compression.
The best compression scheme is determined automatically when a
RowGroup is created.

To guarantee top-notch scan performance, we implemented the
compression and decompression routines using SIMD (AVX-512).

Statistics.Within a RowGroup, we keep fine-grained statistics
per column. It is typically more efficient to store statistics not phys-
ically within the RowGroup, but rather out-of-band because, then,
accessing does not require reading the actual data. We chose to
keep these statistics in our meta data. Most notably, we keep the
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Figure 2: The Main store is optimized for analytical queries.
In the Main store, data is partitioned into RowGroups. Row-
Groups consists of one or more PaxGroups. PaxGroups are
allocated within physical storage (Allocation Unit, or AU).
Within PaxGroups, data is stored in columnar format and
compressed. The data within a PaxGroup consists ofmultiple
regions. Each region can serve different purpose: e.g. store
compressed codes, exceptions, dictionaries (not shown) or a
heap for variable-length data.

minimum and maximum (aka Zonemaps), to prune not qualifying
RowGroups early, but also keep statistics for query optimization.

Access. During scans, we only fetch the data regions we are
interested in. This allows avoid fetching regions and columns that
are not needed. In other words, we use RowGroups and PaxGroups
only as logical units of storage.

4.2 Row-Based Delta Store
Our Delta store is optimized for fast modifications. Each table
can have multiple deltas (originating from multiple Update Prop-
agations). Each Delta is basically a row-wise table with payload
columns (Col A and Col B) and additional columns to facilitate
modifications and version reconstruction (Delete and Version Vector,
which resembles the Version Vector from Hyper’s MVCC imple-
mentation [18]).

As illustrated in Figure 3, the Delta is split into multiple regions:
RowIdMap, RowSpace, UndoSpace, DeleteLog (not shown) and String
Heap (not shown):
• RowIdMap: Unfortunately, Hermes does not control the row ids

coming from MySQL5. Consequentially, we have to map row ids
to physical locations (i.e. pointers). The RowIdMap is an append-
only hash map from row id to offset into the RowSpace.

5Otherwise (if one could control the row ids), we could encode the physical location,
thus, making each lookup more efficient.
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Figure 3: Each Delta consists of a RowIdMap that maps row
ids to offsets into the RowSpace. The RowSpace stores newest
version of the table plus Version Vector and row id. Some-
times rows in the RowSpace have older versions, in that case
we have the newest version pointing into the UndoSpace.

• RowSpace: The RowSpace hosts the table. The pointer from the
Version Vector points to the UndoSpace.

• UndoSpace: The UndoSpace is a heap of undo images that we use
to reconstruct older versions.

• DeleteLog: It can happen, that we Update or Delete a row that is
not in the Delta. For this case, we keep a list of row ids together
with the respective timestamps of the change (current transaction
id). During commit, we update the timestamp to the commit id.

• String Heap: Sometimes we have to store variable-length data.
Such data is stored in the String Heap.
Example. In our example in Figure 3. The Delta contains 2 rows

(row ids 4 and 8). Row 4 has been updated at timestamp 1. It changed
from 𝐴 = 15 and 𝐵 = 16 to 𝐴 = 23 and 𝐵 = 42. Row 8 has been
deleted at timestamp 2.

4.3 Operations on Delta & Main Store
We now describe how data modification and scans are performed
on Main and Delta store.

Current Delta. In the Delta store, we can have multiple Deltas
for the same table. They form a linked list with themost recent Delta
at the top/head of the list. Within a transaction we always choose
the most recent Delta. If Update Propagation would create another
Delta more recent – the new head of the list – the transaction will
still write to the older one (old head).

Data Modification. Data modification basically just modifies
the most recent Delta. Before that operation, we lock a latch on the
row (hash row ids and compute index in latch table and lock latch).

We now distinguish between insert, update and delete:
Inserts are just appends to the end of the RowSpace, potentially

causing it to grow.
For Updates, we utilize the ideas from Hyper’s MVCC imple-

mentation [18]. We maintain a Version Vector that allows us to
re-construct older versions. When updating a row, we first create a
copy in the UndoSpace, append it to the Version Vector (add link to
chain and modify the timestamp to the transaction id) and, after-
wards, update the row in-place. Concurrent transactions will not be
able to see our update, but can reconstruct their version from the
Version Vector. If the row does not exist in the Delta, we append
the row id together with the current transaction id to the DeleteLog.

For Deletes, we maintain an extra column which marks the death
time of the row as timestamp in the RowSpace. Consequentially,
deleted rows become invisible to newer transactions. If such a row
does not exist, we append the row id with the current transaction

id to the DeleteLog. If the death timestamp has not been 0, there
must have been a write-write conflict and we throw an error and
abort the transaction.

Scans. Scanning multiple data stores, i.e. Main and Delta store,
have one major challenge: We need to efficiently combine data from
both. Unlike other approaches, we do not need to iterate through
an ordered Delta structure (Positional Delta Tree [11], and merge
depending on the row id) and, neither, do we require expensive key
lookups (into the Delta, i.e. check whether current row from Main
store is in Delta).

Instead, we chose to simplify the problem into Filtering and
Appending. Both operations are rather lightweight (no random-
access lookups) and typically touches only a subset of the rows
from the Main store.

The basic idea is to first emit rows from the Main store, filter
changed rows out, and, afterwards, emit the rows from the Delta.
In detail, scans operate as follows:
(1) We read the all Deltas (𝐷), buffer them and collect all row ids

of rows that changed (depending on the visibility/timestamp
of our transaction).

(2) Then, we read the Main store (𝑀) and remove the rows that
have row ids from step 1 (we emit𝑀 − 𝐷).

(3) Finally, emit the data from the Deltas (𝐷).
This process takes one pass through all rows of the Delta and

one through the Main store. To optimize the filtering (computing
𝑀 − 𝐷), we build an ordered set of row ids (from the Deltas). Since
now both, row ids from Delta and Main store, are ordered by row id.
We can use a merge-style algorithm to filter the rows out. Together
with our assumption that most data will be in the Main store (up to
10% data in Deltas), this algorithm is efficient and runs in amortized
< 1 cycle per row, because it will mostly skip through.

4.4 Intermediate Columnar Delta
In Hermes the Delta store as explained above will be merged peri-
odically into the Main store (Update Propagation). In brief, Update
Propagation collects the changes from the Delta and creates new
RowGroups in the Main store.

Worst-case For Update Propagation. For workloads with
uniformly random updates or deletes the worst-case happens: We
might have only a few updates/deletes triggering the creation of
a new RowGroup. This is a rather costly process, which leads to
extra memory footprint and often turns 1 GiB compressed (one
Allocation Unit) into 2-3 GiB uncompressed data. But even more
importantly leads to write amplification, as a few rows of changes
will lead to writing 1 GiB of data.

Solution: 3 Storage Levels. To mitigate this problem, we add
another storage level between the row-based Delta and the com-
pressed columnar Main store: Columnar Delta.

Columnar Delta. The Columnar Delta contains the most-recent
committed rows from the Delta, since the last Update Propagation,
and a list of deleted rows. The Columnar Delta has two advantages:
(1) We mitigate the worst-case by buffering the modifications for
longer and (2) we can propagate modifications from the row-based
Delta more frequently, which is required to cleanup Deltas.
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Figure 4: Storage Levels in Hermes: Insert/Deletes/Updates
(modifications) first reach the Row-based Delta. Different
processes move data from one level to another. We need an
intermediate delta (Columnar Delta) to handle uniformly
distributed modifications. Otherwise, uniformly distributed
modifications would introduce into nearly every RowGroup
forcing a complete rewrite of the Main store. Besides be-
ing incredible inefficient, this led also to significant write-
amplification. The Columnar Delta mitigates this by buffer-
ing changes for longer.

We illustrated the flow of changes through the levels in Figure 4.
In brief, incoming updates/deletes/inserts (from Change Propaga-
tion) will first go to the Delta. Over time they will be promoted to
the Columnar Delta until they reach the compressed Main store.

4.5 Update Propagation: Moving Data from
Delta to Main Store

Since reading from the Delta store is comparatively slow, we need
to periodically move data from the write-optimized Delta to the
read-optimized Main store. We call this process Update Propagation.

In general, Update Propagation moves data down the levels (as
also illustrated in Figure 4). We differentiate between two different
sub-processes: Propagation to the Columnar Delta and Merge into
the Main Store, which we explain:

Propagation: From Row-based Delta to Columnar Delta.
The first processes Propagation to the Columnar Delta moves data
from the row-oriented Delta into a read-oriented Columnar Delta 6.
The Columnar Delta is column-oriented and only contains the most
recent (last committed) subset of the data. To bring down the cost
of the future Merge into Main store and to allow efficient scans, we
also order the Columnar Delta by row id. The Update Propagation
into the Columnar Delta, creates a new row-oriented Delta.

This process is triggered rather frequently. This happens when
we need to clean up row-oriented Deltas, i.e. whenever we require
more space for new data or need to consolidate data for faster read
access. The Columnar Delta not only mitigates the issues mentioned

6We introduced the Columnar Delta as step in between because Merging into the Main
Store can in some scenarios be rather costly and lead to significant write amplification.
We described the rational in Section 4.4

in Section 4.4 but also allow preparing the data for the next step:
Merging into the Main Store.

Merge: From Columnar Delta into Main Store. Once the
size of the Columnar Delta exceeds a certain threshold or a certain
time period is reached, we merge the Columnar Delta into the Main
Store. On the high-level, the process is as follows: We first try to
find matching RowGroups. Afterwards, we merge each RowGroup.

1. Finding Matching RowGroups. Since both Columnar Delta
and Main Store are ordered by row id, we use a merge-style algo-
rithm to find the matching RowGroups. The pseudocode is shown
in Listing 1.

We iterate through all RowGroups of the Main store for table T.
Note that the Columnar Delta D rarely contains changes for many
RowGroups. Therefore, we can frequently skip through RowGroups
(step 1). It can happen that the inserts/updates/deletes from Change
Propagation would logically modify many RowGroups. Physically,
these changes are buffered using the Columnar Delta (discussed in
Section 4.4).

After skipping irrelevant RowGroups, we collect the changes
relevant for each RowGroup (step 2). There are two special cases
possible: (a) Row ids of changes can fall in between two RowGroups
or (b) Changes need to be appended at the end of the Main store.
For case (a): If the row ids of the changes are less than the first row
id of the next RowGroup, we append the changes to the previous
RowGroup. If there is no next RowGroup, case (b), we need to
append at the end, thus, creating new RowGroups.

2.Merge eachRowGroup.After collecting the changes for each
RowGroup, we iteratively merge the changes into the RowGroups
(in a background thread). Merging changes into a RowGroup R
creates a new RowGroup R’ and involves these steps:
(1) Decompress the RowGroup R into a buffer B. Note that this

step can possibly introduce quite some memory footprint, as a
compressed RowGroup of 1 GiB (one Allocation Unit) can often
lead to roughly 2-4 GiB for uncompressed data (Section 7.5).

(2) Apply the changes to B. For all the changes, we just mark deleted
rows as deleted, the following step will physically remove them.
For updates, we modify the rows in the buffer.

(3) Create the new RowGroup R’ by compressing the new buffer
B and removing the deleted rows.
Each Merge creates a new version (𝑉 ) of the Main store. Row-

Groups that were changed they are annotated with version 𝑉 , oth-
erwise they stay unmodified and keep their old version. Note that
for unchanged RowGroups we merely copy a pointer to the Row-
Group and, thus, do not re-create a new Main store from scratch
but rather reuse RowGroups without changes. Besides transactions,
Checkpointing uses this mechanism to determine what to back up
(if 𝑉 is newer than the version of previous checkpoint). Note that
since, we use statistics per RowGroup, we do not need to update
global statistics for query optimization as well as early pruning.

4.6 Garbage Collection
After Update Propagation, we clean up our data storage, a process
that is also triggered periodically.

Row-Based Deltas. The propagation of updates from the row-
based Delta to the Columnar Delta creates a new row-based Delta.



Listing 1: Finding matching RowGroups for Table T
FindMatchingRowGroups(Table T, ColumnarDelta D) {

curr_group := MainStore(T) // Current RowGroup

delta_row := 0; // Current index in D

row_group_changes = {} // Changes per RowGroup

appends_at_end = {} // Rows appended @ end

while (curr_group) {

// Step 1: Skip RowGroups without changes

if (curr_group ->first_id < D[delta_row ]. row_id) {

curr_group := curr_group ->next

continue;

}

// Step 2: Collect changes for each RowGroup

row_group = &row_group_changes[curr_group]

while (curr_group ->last_id >= D[delta_row ]. row_id

&& delta_row < D.size ()) {

// Append our change to RowGroup

row_group ->Append(D[delta_row ])

delta_row ++

}

curr_group = curr_group ->next

// Step 3: Append remaining changes to previous RowGroup

while (curr_group

&& curr_group ->last_id >= D[delta_row ]. row_id

&& delta_row < D.size ()) {

row_group ->Append(D[delta_row ])

delta_row ++

}

// Remaining changes are appended at the end

while (! curr_group && delta_row < D.size ()) {

appends_at_end.Append(D[delta_row ])

delta_row ++

}

}

return (row_group_changes , appends_at_end)

}

The old Delta(s) can be garbage collected, once no active trans-
actions access them anymore. We track the active transactions
via the GTID mapping that maps MySQL timestamps to Hermes
timestamps (described in detail in Section 5.2).

Releasing the Delta in bulk solves two challenges: (a) It avoids
fine-grained garbage collection to minimize the length of the ver-
sion chains (due to costly row reconstruction). (b) Sub-structures
can be append-only (e.g. RowIdMap, RowSpace, UndoSpace), making
a lock-free implementation easier.

Columnar Delta. Garbage collecting the Columnar Delta is
trivial i.e. after a Columnar Delta has been merged into the Main
Store and it can be discarded.

Main Store. The Main store contains multiple versions. Essen-
tially we only need to keep either the last version with active trans-
actions or the most recent version. Similar to the row-based Delta,
we use the GTID mapping to prune old RowGroups and Main store
versions.

5 INTEGRATIONWITH MYSQL
Hermes operates as an accelerator for MySQL. In this section, we
describe how we integrated with MySQL. First, we explain how
we replicate the state from MySQL to Hermes. Afterwards, we
describe how we achieve consistent snapshots (between Hermes
and MySQL), followed by how we keep functionally consistent to
MySQL and work around some of MySQL’s quirky-ness.

5.1 Replication
Our replication mechanism piggy backs on MySQL’s replication
mechanism. We replicate transactions from MySQL using two pro-
cesses Ingestion and Change Propagation:

MySQL’s Replication. One of MySQL’s many features is: Repli-
cation. Replication allows many different solutions reaching from
backups and failover to scale-out or accelerators (here) [17].

MySQL allows subscribing to the binary log (binlog) from which
replicas can gather all committed transactions. Each transaction is
identified through a GTID (Global Transaction Identifier).

Ingestion. Ingestion splits the table into chunks, and inserts each
chunk in parallel. While it is possible to insert into the Delta, it is
rather inefficient as it requires the changes to be propagated to the
Main store via Update Propagation. Additionally, we know that we
do not require fine-grained versioning as there is only one version.
Therefore, we skip the Delta and directly append each chunk into
the RowGroups, whenever the sorting order of the table in MySQL
matches the row ids, which is almost always the case.

Change Propagation. Change Propagation replicates binlog
events from MySQL to Hermes, essentially replicating the state of
the database.

Naive Change Propagation. In our initial implementation, log
events would go through 3 stages: (1) log parsing/interpretation
would create the event, (2) we transform data (into the right shape
from binlog format to format suited to the Delta) and, finally, (3)
apply the changes via transactions directly on the Delta. Further
we parallelized each stage, i.e. (1), (2) and (3) can run in parallel.
Naively, one would apply events strictly in commit-order. This
requires transactions with a GTID older than the current trans-
action’s GTID is be committed, no matter of whether the second
transaction actually depends on the first transaction. We noticed
that this significantly limits the transactional throughput.

Out-of-Order Change Propagation. Relying on the strict
commit-order introduces significant latency proportional to the
amount of changes being replicated. To break the strict commit-
order, we explicitly track the dependencies of transactions. When
running a transaction against a specific version, we require all its
dependencies to be committed, and its changes to be visible, before.
Internally, requires Hermes to commit transactions out-of-order
(even though 𝑇1 has been committed before 𝑇2 im MySQL, depen-
dencies can force Hermes to first commit 𝑇2). Technically, we keep
a cyclic buffer of the last 𝑁 transactions and track their state.

5.2 Consistent Snapshots via MVCC
When a transaction is committed in MySQL (with binary logging
enabled), it receives a GTID (Global Transaction Identifier). When
a MySQL transaction is replicated to Hermes, it is first assigned a
Hermes Transaction Identifier (HTID) and a start timestamp (𝑇𝑠𝑡𝑎𝑟𝑡 )
that defines the view (i.e. everything < 𝑇𝑠𝑡𝑎𝑟𝑡 ). To achieve view con-
sistent with MySQl, we maintain a mapping from GTIDs to HTIDs.
Whenever a Hermes transaction commits, it will receive a commit
timestamp (𝑇𝑐𝑜𝑚𝑚𝑖𝑡 , allocated from the same counter as 𝑇𝑠𝑡𝑎𝑟𝑡 ).
After the transaction has successfully been committed 𝑇𝑐𝑜𝑚𝑚𝑖𝑡 is
added to the mapping. Following transactions, will see that there is
a mapping from the current GTID to a commit timestamp and will
use that timestamp as 𝑇𝑠𝑡𝑎𝑟𝑡 .
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Figure 5: Flow of a SQL query through MySQL and Hermes.
After MySQL optimized the query we check whether the cost
is high enough and all features are supported. If offloading
to Hermes is supported, we parse the query again, resolve
types and, afterwards, generate an annotated SQL query that
is sent to and evaluated by Hermes, which, then, returns the
result serialized in the Apache Arrow format. This is, then
"unwrapped" by MySQL and reported to the user.

It can happen that the changes for a transaction are not yet
replicated. In that case, we will wait until the changes have been
replicated (and to corresponding mapping from GTID to HTID
exists). Practically, this waiting time is in the low milliseconds and
negligible compared to the runtime of the query, which is often
hundreds of milliseconds or more.

5.3 Functional Consistency
An often under-appreciate challenge is keeping the query results
consistent with MySQL. Quite certainly countless hours have been
spent on this possibly never-ending endeavour. For instance,MySQL
is able to answer seemingly erroneous queries in unexpected ways:
• select 3+’abc’ will return 3, as MySQL turns ’abc’ into 0.
• select substr(123, 1, 1)will return 1, becauseMySQL turns

the integer 123 into the string ’123’.
Approach. How a query flows through MySQL and Hermes is

illustrated in Figure 5, a description follows: When we run a MySQL
query, we first analyze it’s query plan. We check whether Hermes
supports the feature and whether the estimated cost metric is high
enough to justify offloading to Hermes. Otherwise, MySQL will run
the query anyways.

If Hermes supports the query, we let MySQL parse the query
again. Then, MySQL resolves the types of each expression, and
generates an annotated SQL query that resolves, above mentioned,
quirky issues. In particular, we add optional type casts to solve above
issues. Afterwards, Hermes uses the generated SQL to evaluate the
query mostly oblivious to MySQL casting rules. Whenever, the
optional casts is consistent with our own types, we skip the cast to
save CPU cycles.

In summary, Hermes supports a wide range of MySQL’s fea-
tures and support is close to the top-notch cloud database products
GaussDB for MySQL and Taurus [6].

6 QUERY EXECUTION
Hermes features a relatively complete query engine, including sup-
port for collations, Window functions and JSON.

Vectorized Execution with SIMD. For executing queries we
use Vectorized Execution [3], which partitions the input into cache-
sized data chunks (0.5-2k rows). Each chunk is then processed in
a columnar fashion in a tight loop. Furthermore, we extended our
engine with SIMD (AVX-512). Especially filters on base tables are
optimized using AVX-512. AVX-512 shines are creating Selection
Vectors via the vpcompress instruction [12] 7 Furthermore, we
introducedmicro-adaptive optimizations [19] formostly full vectors
and densely filled, we skip the evaluation via Selection Vector and
directly access the underlying vector(s) like e.g. Excalibur does [10].

Intra-Query Parallelism. Each query exploits multiple cores
using Morsel-driven parallelism [16]. Data is logically split into
Morsels (data chunks, larger than vectors, typically 10-32k rows).
Each thread dynamically consumes Morsels and processes the as-
sociated data until all Morsels are processed.

7 EXPERIMENTAL EVALUATION
We integrated Hermes with MySQL 8.0.22. We setup Hermes as
a single node with storage located in main-memory with MySQL
located on the same machine. For most benchmarks we used a two-
socket with Intel Xeon Platinum 8378A with 512GB DRAM and
32 cores (64 logical cores) each. If we do not use that machine, we
denote it in the experiment. First, we evaluate Hermes on a medium-
scale analytical workload (TPC-H SF100), followed by a large scale
workload (SF1000). Afterwards, we benchmark the throughput of
Hermes’ replication mechanism. Then, we investigate the impact
of updates onto the scan performance as well as the compression
rate our lightweight compression schemes achieve.

7.1 Medium-scale: TPC-H SF100
We believe most customers do not have extremely large datasets.
Therefore, we focus on the medium-large dataset from TPC-H scale
factor (SF) 100, which is roughly 100 GiB of uncompressed data.

Hermes vs. MySQL. First we compare our accelerator (Hermes)
against MySQL. We ran the queries from the TPC-H benchmark on
scale factor 100, the result can be seen in Table 1.

Compared to MySQL, we see speedups are 2-3 orders of magni-
tude, reaching up to 1, 800×. The worst speedup seen is a "meager"
17×. Thus, Hermes can significantly accelerate analytical queries.

PolarDB. PolarDB-IMCI [24] is a close competitor to Hermes.
Here, we compare against PolarDB-IMCI using their reported run-
times [2]. We used the best numbers shown for PolarDB which is in
that case using four machines/nodes with 32/16 logical/real cores
each. The results can also be seen in Table 1. Hermes outperforms
PolarDB in 19 out of 22 queries and in 7 queries by more than 2×.

Hermes underperforms in 3 queries. Note that these queries are
still executed reasonably fast (in under half a second).

PolarDB Single-Node.Additionally, we compare to single-node
PolarDB-IMCI. Similarly, we used the numbers reported by the same
website, but adjusted to runtimes to the number of cores, assuming
linear scalability (shown as IMCI 1 Node; we assumed dividing the
7vpcompress builds copies values from the input into the resulting when a bit in the
mask is set. The values in the result are stored sequentially without gaps.



Table 1: Runtimes on TPC-H SF100 (secs): On medium-
large datasets, across the board, we significantly outperform
MySQL (optimized for transactions) by orders of magnitude
and PolarDB-IMCI (optimized for analytics) often by 2 − 4×.

Qu- Hermes MySQL PolarDB-IMCI IMCI 1 Node
ery Time Time MySQL

Hermes Time IMCI
Hermes Time IMCI

Hermes

Q1 0.81 964 1,190 1.50 1.9 2.33 2.9
Q2 0.21 13 61 0.45 2.1 0.36 1.7
Q3 0.56 394 703 0.81 1.4 1.22 2.2
Q4 0.51 88 173 0.37 0.7 0.73 1.4
Q5 0.52 214 411 0.98 1.9 1.08 2.1
Q6 0.30 129 430 0.18 0.6 0.27 0.9
Q7 0.55 831 1,511 0.88 1.6 1.21 2.2
Q8 0.54 531 983 1.01 1.9 1.05 1.9
Q9 2.49 301 121 4.74 1.9 7.15 2.9
Q10 0.89 151 170 2.42 2.7 2.23 2.5
Q11 0.18 333 1,847 0.74 4.1 0.53 2.9
Q12 0.46 172 375 0.53 1.2 0.85 1.8
Q13 1.14 1,143 1,003 3.56 3.1 2.92 2.6
Q14 0.45 156 347 0.38 0.8 0.55 1.2
Q15 0.56 300 536 0.82 1.5 1.23 2.2
Q16 0.33 25 76 1.19 3.6 1.13 3.4
Q17 0.53 46 86 2.51 4.7 1.46 2.8
Q18 1.46 1,196 819 2.46 1.7 6.36 4.4
Q19 0.66 11 17 0.68 1.0 1.06 1.6
Q20 0.45 38 84 0.80 1.8 0.61 1.4
Q21 1.69 1,392 824 1.82 1.1 3.46 2.0
Q22 0.28 112 401 0.98 3.5 0.70 2.5

Total 15.6 8539 336 29.81 1.9 38.51 2.5

runtimes by 2 would compensate for half the CPU cores). Except for
the slightly slower Q6, we outperform single-node by up to 4.4×.

Reaching Single-Node Bandwidth. PolarDB, for example, out-
performs in Q6. Q6 is a rather simple query (scanning, filtering and
computing global aggregates) that is very sensitive to scan band-
width (most rows are read, but thrown away). Since PolarDB uses
4 nodes, it can get a higher memory bandwidth (4× single-node
bandwidth). While, Hermes can get a higher net bandwidth on
scans due to lightweight compression [25], distinct nodes can still
achieve a higher bandwidth (no NUMA traffic and more memory
controllers with direct access to DRAM).

However, for more complex queries (with e.g. a group-by clause),
multi-node PolarDB will have to re-partition data across the net-
work, giving it a disadvantage.

Negligible Overhead of Additional Parsing and Optimiza-
tion Steps. When a query travels from MySQL to Hermes, is goes
through multiple steps. These include parsing and optimizing one
query twice as well as generating an annotated SQL query from the
plan (fromMySQL). First we need MySQL to parse and optimize the
query to decide whether to offload to Hermes (cost > 𝑁 .), but we
also require additional annotations (optional casts) to keep query
semantics consistent with MySQL. Afterwards, we chose to gener-
ate SQL text from the annotated plan. Afterwards, the annotated
SQL query is parsed and optimized again by Hermes. We did not
notice significant overheads arising from these additional steps on
TPC-H scale factor 1 and larger.

Table 2: Runtimes on TPC-H SF1000 (secs): Hermes is able
to larger workloads as well. On the 10× larger data set, we
outperform, the multi-node, PolarDB-IMCI by roughly 2×.

Query Hermes PolarDB-IMCI IMCI 1 Node
Time Time IMCI

Hermes Time IMCI
Hermes

Q1 16.4 14.6 0.9 54.1 3.3
Q2 3.6 5.4 1.5 13.0 3.6
Q3 10.3 9.2 0.9 37.0 3.6
Q4 8.7 4.6 0.5 28.4 3.3
Q5 7.9 10.1 1.3 38.2 4.8
Q6 2.6 1.7 0.7 20.5 7.9
Q7 6.2 9.6 1.5 43.6 7.0
Q8 7.7 7.5 1.0 42.2 5.5
Q9 16.9 58.7 3.5 164.4 9.7
Q10 9.4 35.9 3.8 58.6 6.2
Q11 2.1 6.4 3.0 5.4 2.6
Q12 5.8 5.8 1.0 40.8 7.0
Q13 17.2 63.8 3.7 46.9 2.7
Q14 6.0 3.8 0.6 26.5 4.4
Q15 5.2 8.5 1.6 50.2 9.7
Q16 2.7 10.0 3.7 11.5 4.3
Q17 7.1 24.4 3.4 48.9 6.9
Q18 24.1 63.6 2.6 239.4 9.9
Q19 10.2 21.6 2.1 48.6 4.8
Q20 7.4 7.3 1.0 29.4 4.0
Q21 26.6 22.5 0.8 94.3 3.5
Q22 4.4 10.2 2.3 8.4 1.9

Total 208.4 405.0 1.9 1150.0 5.5

7.2 Large-Scale: TPC-H SF1000
Besides, medium-large data sets Hermes is also able to run much
larger workloads. Therefore, here, we show Hermes’ performance
on the 10× larger dataset of TPC-H SF1000. For PolarDB-IMCI,
again, we used the numbers reported by them [2]. We used the
best numbers shown for PolarDB which is in that case using four
machines/nodes with 32/16 logical/real cores each (PolarDB-IMCI ).
Additionally, we compare to single-node PolarDB-IMCI (IMCI 1
Node). Similarly, to Section 7.1, we used the numbers reported, but
adjusted to runtimes to the number of cores.

Table 2 shows our results: Hermes is able to run all 22 queries.
Note that the compressed data size of SF1000 should be around
350 GiB, which leaves us with enough main memory to run queries.

Again, we outperform our close competitor PolarDB-IMCI by a
factor of 1.9× (total runtimes). Like in SF100, Hermes is limited in
its scan bandwidth, compared to a multi-node system. However, in
more complex queries with larger joins Hermes outperforms (e.g.
Q2, Q9, Q10, Q22). Compared to single-node PolarDB, we outpeform
across the board and by up to 9.9×.

7.3 Replication Throughput
Hermes guarantees access to "fresh data". If the wished version has
not been replicated yet, Hermes will have to wait. In practice, we
have seen wait times in the low milliseconds, thus negligible to
the query runtime. Each change has to be committed on MySQL,
first. Afterwards it is processed by Change Propagation (interpret-
ing binary log, creating operations on Delta store and eventually
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(b) Throughput in binary log bytes processed per second: #bytes
of log entries is proportional to the data size of the changes. We
can see that more complex transactions (Compound Txn) lead to
better performance. However, too large transactions can lead to
higher waiting time as they can have more dependencies that
need to be resolved beforehand.

Figure 6: Change Propagation Throughput. Compound Txn is a transaction consisting of one insert, one delete and two updates.

committing the transaction.). In this experiment, we measure the
throughput at which Hermes can receive changes (whole pipeline,
from MySQL until commit on Hermes).

Hardware. We measure the throughput on a different machine,
Intel Core i9-13900K with 8 performance and 16 efficient cores (i.e.
Intel’s version of ARM’s big.LITTLE) and 128 GiB DRAM.

Workload. We created a table with two integer columns and
two string column and 50k rows. Based on that table with run the
three following experiments, each runs within transactions: In run
(a) 10M single inserts, (b) 10M single updates and (c) 3M compound
transactions consisting of one insert, one delete and two updates.

Changes per Second. Figure 6a shows the number of changes
processed per second. All three experiments, show similar scaling
behavior, i.e. they scale until 8 cores are reached and flatten out
afterwards. This is likely a consequence of the hardware we chose,
which only provides 8 high-performance cores. Peak throughput is
at 60k changes per second (for single inserts and updates).

Interestingly, the throughput for the larger compound transac-
tion (Compound Txn) is roughly 3× lower. The reason is that larger
transactions involve more operations and, therefore, take longer
to process. Note that Compound Txn contains 4 operations, if we
normalize per operation Compound Txn could have a rate of roughly
80k changes per second.

Processed Bytes per Second. Additionally we also measure
the amount of binary data our Change Propagation processes. This
is a fairer comparison with respect to transaction size. We visualize
the measurements in Figure 6b.

We see similar scaling behavior, for the same reason (8 high-
performance cores). Furthermore, we see a higher throughput for
larger transactions (Compound Txn), roughly 2× compared to Single
INSERT. This indicates that there is some overhead per transaction.

Similarly, if we compare Single INSERT and Single UPDATE, we
see a significant difference (although less than 2×), indicating that
currently inserts (i.e. essentially appends) in Hermes are slower.
This is likely caused by latch contention: We need a delta-wide (per
table) latch to allocate a new row in the Delta, an update just needs
a latch (determined by its row id). We are planning to optimize this
case, replacing latches with atomic operations, in the near future.

Summary. Overall, Hermes can sustain up to 60k single trans-
actions inserts/updates per second on a (small) single-node, and
potentially higher rates on a larger machine. Nevertheless, we are
actively working to increase replication throughput further.

7.4 Scan Performance with Updates
The efficiency of Hermes’ scans depends on the amount of changes
present in the delta. In this experiment, we investigate the scan
performance with varying amounts of UPDATEs.

We created a table with 𝑁 = 226 (≈ 6.7M) rows and 11 64-bit
columns: 1 primary key column, with values from 0 to 𝑁 , and
10 payload columns that are uniformly random. The primary key
column is only used for updates, which are also uniformly ran-
domly distributed. After issuing the updates, we scan all 10 payload
columns single-threaded. Figure 7 shows the timings of the scan.

Scan Performance. Without updates (i.e. without a Delta), the
scan runs in 11.5 cycles/row, i.e. 1.2 cycles/attribute. In the plot, we
show the performance degradation compared to the baseline (no
updates).. In general, with an increasing number of updates, we see
an increasing degradation of scan performance. Until 0.2% of the
table updated, we can see almost no degration(≤ 20%). At around
0.5%, we see a 50% degradation. At 1%, we see a 100% degradation
(i.e. scans roughly twice as expensive). Until, at around 3%, the scan
is roughly 4× slower.

The reason for the performance degradation is the increasing
cost of scanning and pre-processing the Delta as well as eliminating
the changed rows during the scan.

FilteringMain StorewithDelta. Below 0.01% updates, filtering
the data from the Main store with the Delta costs ≤ 1 cycle per
row. At around 1%, filtering costs only 2.5 cycles per row. However,
compared to the other costs, filtering is rather insignificant.

Other Costs (Rem. Scan). During the scan we have other costs
as well: We need to (1) scan the Delta and (2) collect and order the
row ids. Both steps are included into Rem. Scan and are normalized
per attribute (i.e. per row it would be 10× that).

From≈ 1% of the table updated, we see scanning& pre-processing
the rows, from the Delta, quickly becoming costly.
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Figure 7: Scan performance on a (static) table with updates:
Scan performance decreases with increasing number of up-
dates. Below 0.2% of the table updated, scan performance
degraded by ≤ 50%, whereas at 1% scan performance halves.
In practice, we try stay below 1% by eagerly merging changes.

Table 3: Hermes lightweight compression compresses
datasets by roughly 3×. Since we are using lightweight com-
pression schemes, decompression is practically free. Further-
more, we compress into small cache-sized arrays, which very
likely stay in cache. Compression ratio on SF100.

Dataset Uncompressed (GiB) Compressed (GiB) Ratio

TPC-H 115.5 35.5 3.2
TPC-DS 79.1 31.3 2.5

One reason for this behaviour is that we did not optimize this
code path (yet), because this only happens for OLAP querieswhereas
DML directly goes into the Delta..

Summary. Scans get slower the more rows are updated: Until
1% of the table the overhead is "negligible". Until 0.2% it is ≤ 20%.
Until 1% scans become roughly twice as slow, but that would be
barely noticeable in complex OLAP queries which are less likely
limited by scan performance alone.

7.5 Compression Ratio
Hermes uses lightweight compression to (a) store more data in a
single-node and (b) increase the net bandwidth when reading data
(decompress into CPU cache). In this experiment we show how well
our compression schemes compress. Table 3 shows the compression
rate (uncompressed vs compressed) on TPC-H and TPC-DS. Both
datasets include integers, DECIMALs and strings (variable length
data).

We noticed significant compression ratios of roughly 2 − 3×.
This allows Hermes to fit very large datasets still into memory and
avoid accessing memory from other nodes, which would require a
multi-node systems involving costly data transfers across the net-
work. While we achieve significant compression ratio on uniformly
random data (TPH-H and TPC-DS), we did not notice significant
time spent on decompression. This strengthens the point that light-
weight compression does not introduce any significant overhead
and thus bring data compression "for free".

8 CONCLUSION
In this work, we presented Hermes – a cloud-native accelerator for
analytical workloads. Unlike many other cloud solutions, we chose
to design Hermes for single-node. We decided for a single-node
system, because customer workloads are often now extremely large
(regarding data size) to justify a multi-node distributed system that
frequently ends up mostly transferring data across the network,
instead of performing useful work.

We present Hermes’ architecture and highlight important details
as data storage optimized for fast insert/delete/update as well as
analytics. Another very important feature of Hermes is its com-
patibility and integration with MySQL. We transparently replicate
MySQL’s data (via its binary log) and allows reading specific ver-
sions of the data. Before we can run a query on a specific version
we must ensure that version has been replicated. If that version
has not yet replicated, we wait. However, in practice the waiting
times are negligible compared to the runtime of analytical queries
(1-5 ms waiting vs. 500 ms query). Especially, we highlight how
we achieved an implementation that functionally emulates MySQL
with most, if not all, its quirky-ness.

We evaluated Hermes and achieved speedups of 2-3 orders of
magnitude compared to MySQL for analytical queries (TPC-H
SF100). Compared PolarDB-IMCI [24], a cloud-native distributed
system optimized for analytics, we achieved an overall speedup of
roughly 2×. In many TPC-H queries, we significantly outperform
PolarDB, in certain queries, by up to 4.7×. But Hermes is also able
to operate on much larger workloads and even on TPC-H SF1000
outperforms PolarDB. Since high replication throughput is essential
to Hermes, we evaluate replicate performance in an experiment.
Hermes was able to handle to up 60k changes per second, on a
workstation (server hardware is certainly more powerful).

FutureWork.We are currently still actively working on improv-
ing both analytical and replication performance further. Replication
throughput can improved further by replacing latching in the Delta
store with lock-free operations. Our replication framework is quite
flexible and can target other sources as well, if MySQL’s binary
log turns out to be too slow. Besides, we are exploring possibilities
for multi-node setups (for storage and query execution) that do
not suffer from excessive network traffic and complexity. In addi-
tion, we are also exploring alternative hardware architectures and
optimizations via hardware-acceleration.

Closing Words.While in this paper, we only presented Hermes
as an in-memory accelerator for MySQL. Hermes allows many
different designs as well. Hermes can dynamically offload parts
of the Main store to Object Storage and cache the hot data set in
memory, essentially allow running workloads much larger than
main memory, i.e. much larger than terabytes of data.
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