
Efficient Query Processing with 
Optimistically Compressed Hash Tables 

& Strings in the USSR

Tim Gubner*, Viktor Leis^, Peter Boncz*

* ^



Motivation
Hash tables frequently used in analytical queries

Crucial for overall performance

But (large) HTs bottlenecked by main memory bandwidth

What can we do about it?

2



Motivation
Orthogonal approaches:

● Optimize access:
○ Partitioning
○ Prefetching

● Increase fill-rate:
○ Cuckoo*, Robin Hood^ hashing
○ Virtually eliminate empty rows (Concise HT)°

● Shrink the table itself

3

* R. Pagh, F. Rodler: Cuckoo Hashing
^ P. Celis: Robin Hood Hashing
° R. Barber, G. Lohman, I. Pandis et al: Memory-efficient Hash Joins



Shrinking Hash Tables
100 MiB, magically shrink by 10x:

a) Downsize your computer
b) Increase query throughput

4



Shrinking Hash Tables
100 MiB, magically shrink by 10x:

a) Downsize your computer
b) Increase query throughput

Bonus:
HT 10 MiB, fits into L3/LLC cache
Improved runtime

5



Shrinking Hash Tables
100 MiB, magically shrink by 10x:

a) Downsize your computer
b) Increase query throughput

Bonus:
HT 10 MiB, fits into L3/LLC cache
Improved runtime

6

Better Latency & Throughput



Approach

7



Overview

8



Compression
Requirements:

● Very lightweight
● Support random access

Domain-Guided Prefix Suppression:

● Variant of bit-packing/null suppression
● Lightweight: Handful bitwise operations
● Fast random access: Rows independently compressed & word-aligned
● Fast equality comparisons on compressed data

9



Optimistic Splitting 

10

● Decrease effective memory footprint
● Decompose HT into:

Hot HT:

● Frequently accessed
● Cache-resident
● Aggregates:

SUM: sub-sums fit smaller 
data types

● Frequent strings

Cold HT:

● Rarely accessed
● Main memory
● Aggregates:

SUM: stores full SUM or 
overflow counter

● In-frequent strings



Strings in the USSR
● Assumption: Many strings repeat
● Exploit dictionary-compression, but:

○ Global dictionaries come with huge challenges 
(updates, synchronization)

○ Per-block dictionaries need translation*

● Unique Strings Self-aligned Region (USSR):
○ Query-wide dictionary
○ Limited size (cache resident)
○ Only holds frequent strings
○ Built during scan: Exploit dictionary compression
○ Easy to retrofit into existing engines

11* J.-G. Lee et al.: Joins on Encoded and Partitioned Data



Experiments

12



Faster HashJoin Probe

134 keys [0...1000] á 64 bit, 4 payloads [0...10] á 64 bit



Faster GroupBy on strings
● 10 unique strings
● Speedup S(x) over strings with varying length

14

Length 2 4 8 16 32 64 128 256 512

S(Query) 1 2 1 2 3 3 5 10 22

S(==) 2 2 2 3 3 4 10 20 50

S(Hash) 4 4 4 6 10 15 20 37 80



Smaller Hash Tables in TPC-H

15



Faster Real-World Workloads (Public BI*)
● String heavy^

● “CommonGovernment” workbook:

16

Query 1 2 3 4 5 6

Speedup 2.1 1.4 2.2 1.4 1.3 1.0

USSR size (kB) 1.8 0.5 2.0 0.3 66.1 512.0

Rejection Ratio (%) 0.0 0.0 0.0 0.0 0.0 18.3

* https://github.com/cwida/public_bi_benchmark
^ Adrian Vogelsgesang et al.: Get Real: How Benchmarks Fail to Represent the Real World

https://github.com/cwida/public_bi_benchmark


Summary
Hash tables can be made smaller via:

● Compression
● Optimistic Splitting
● Unique String Self-aligned Region (USSR)

Results in:

(a) Faster runtime
(b) Less memory footprint
(c) Composable (combinable with Cuckoo 

hashing, Concise HT, etc.)

17

Improved runtime:

● 50% on TPC-H
● 2x on Public BI (real workload)
● 22x GroupBy on strings 
● 2.5x Hash Join probe

Improved memory footprint:

● 4x TPC-H (working set)
● 2x TPC-H (total)


