
Exploring Query Execution Strategies
for JIT, Vectorization and SIMD

Tim Gubner, Peter Boncz

CWI

September 1, 2017

1/10



Motivation

What will future DB engines look like?

New hardware increasingly heterogenous: GPUs, FPGAs on the same
chip, specialized CPU instructions

For performance: exploit hardware features

→ Multi-dimensional design space

2/10



Contribution

Shed some light into the design space

Compare multiple implementations of TPC-H Q1:
I Tuple-at-a-time / block-at-a-time
I Regular / compact data types
I Overflow checking / prevention
I Different aggregation techniques
I Varying aggregation table layout

3/10



SIMD (Single Instruction Multiple Data)

One instruction processes 512 bits (AVX-512)

Less bits per element = more elements processed per instruction

Data type width Parallelism
64-bit 8
32-bit 16
16-bit 32
8-bit 64
1-bit 512

4/10



Data types

Derived from schema:
DECIMAL(15,2) → 64-bit integer (32 < log2(1015) < 64)

Thinner data types → more data items per clock cycle

5/10



Compact data types by example

Reduce size of data types based on actual data

Example from TPC-H:
I Schema: tax ∈ DECIMAL(15, 2) → 64-bit integer
I Data: tax ∈ {0.0, 0.1, . . . , 0.8} → [0, 80] → 8-bit integer
I Computation: tax · tax → 8-bit integer · 8-bit integer = 16-bit integer

Restrict data types using domain minimum & maximum

6/10



Overflow handling

Overflow handling is required to guarantee correctness

Detection Prevention
Check Larger data types,

via overflow CPU flag overflow cannot
or specific code (realistically) happen

Overflow checking code is inefficient

Overflow CPU flag is not SIMD friendly

→ Overflow prevention

7/10



Case study: TPC-H Q1

SELECT

l_returnflag, l_linestatus,

count(*) AS count_order

sum(l_quantity) AS sum_qty,

avg(l_quantity) AS avg_qty,

avg(l_discount) AS avg_disc,

avg(l_extendedprice) AS avg_price,

sum(l_extendedprice) AS sum_base_price,

sum(l_extendedprice*(1-l_discount)) AS sum_disc_price,

sum(l_extendedprice*(1-l_discount)*(1+l_tax))

AS sum_charge

FROM

lineitem

WHERE

l_shipdate <= date ’1998-12-01’ - interval ’90’ day

GROUP BY

l_returnflag, l_linestatus

ORDER BY

l_returnflag, l_linestatus

8/10



Compact data types in Q1

Expression Regular Compact
l tax 64 8

l returnflag 8 8
l linestatus 8 8

l extendedprice 64 32
1+l tax 64 8

(1-l discount)*(1+l tax) 64 16
l extendedprice*(1-l discount) 64 32

l extendedprice*(1-l discount)*(1+l tax) 64 64

9/10



Q1 flavors

Base flavor Intermediate Selection
storage strategy

X100 CPU cache Sel. vector
HyPer Registers Branching

Handw. AVX-512 Registers Bit mask

a/10



Design space explored

X100
I Data types: Full, Compact
I Aggregate table layout: NSM (row-wise), DSM (column-wise)
I Aggregation algorithm: Standard, Standard Fused, In-Reg

HyPer
I Data types: Full, Compact
I Overflow: Default (set flag), OverflowBranch (branching), NoOverflow

(prevention)

b/10



Q1 flavors on Sandy Bridge

0 2 4 6 8

X100 Full NSM Standard
X100 Full DSM Standard
X100 Full NSM Standard Fused
X100 Full NSM In-Reg
X100 Compact NSM Standard
X100 Compact DSM Standard
X100 Compact NSM Standard Fused
X100 Compact NSM In-Reg
HyPer Full
HyPer Full OverflowBranch
HyPer Full NoOverflow
HyPer Compact
HyPer Compact OverflowBranch
HyPer Compact NoOverflow
Weld

Runtime in seconds

c/10



Q1 flavors on Knights Landing

0 10 20 30

X100 Full NSM Standard
X100 Full DSM Standard
X100 Full NSM Standard Fused
X100 Full NSM In-Reg
X100 Compact NSM Standard
X100 Compact DSM Standard
X100 Compact NSM Standard Fused
X100 Compact NSM In-Reg
X100 Compact NSM In-Reg AVX-512
HyPer Full
HyPer Full OverflowBranch
HyPer Full NoOverflow
HyPer Compact
HyPer Compact OverflowBranch
HyPer Compact NoOverflow
Weld
Handwritten AVX-512
Handwritten AVX-512 Only64BitAggr

Runtime in seconds

d/10



Takeaways

Do not rely on schema!

Exploit data statistics instead

Ingredients for performance:
I Compact data types
I Overflow prevention
I Adapt algorithms to take advantage of compact data types

e/10



Future work

Even thinner data types / different representations → compressed
execution

System that generates such a query

f/10



Questions?

10/10


	Introduction
	Compact data types
	Case study: Q1
	Results
	Conclusions & future work

