## Highlighting the Performance Diversity of Analytical Queries using VOILA

Tim Gubner

Peter Boncz



The X86 space has been quiet lately ...

#### Meanwhile ...





#### Meanwhile ...





## Why?

#### Better, more cost-effective

- Money does matter
- Optimized chip:
  - License almost-ready chip layout
  - Add specific accelerators
  - Send to some fab
  - Receive semi-custom tailored chip

#### OR

#### Political/Risk mitigation

- Money **does not** matter
- Independence of US and Intel/AMD
  - Trade wars, sanctions
  - Production/delivery issues

#### This Work

- Should we optimize for X86?
- Did performance characteristics change?
- Is there performance diversity?

- Is common wisdom (still) valid?
  - ARM is slow<sup>\*</sup>
  - Data-centric outperforms Vectorized on computational workloads<sup>^</sup>
  - V outperforms DC on data-access-heavy workloads<sup>^</sup>

\* Coffee conversation with senior researcher at CWI

<sup>^</sup> Kersten et al. Everything you always wanted to know about compiled and vectorized queries but were afraid to ask. VLDB 2018 <sup>6</sup>

# THE TRUTH IS OUT THERE

#### What we did

Ported VOILA-based synthesis framework<sup>^</sup> to:

- ARM (M1, Graviton 1, Graviton 2)
- PowerPC (PPC8, PPC9)
- X86 (Skylake-X, 8275C, Epyc)

Ran:

- Micro benchmarks (Computation, scalability, control-flow & memory-heavy)
- Macro benchmarks (TPC-H Q1, 3, 6, 9)

^ Gubner, Boncz. Charting the Design Space of Query Execution using VOILA. VLDB 2021. Thursday Aug 19, R51, around 14:30

#### Control-Flow: To Branch, or not to Branch?



#### Scalability: Does scalable Code scale?

| Hardware       | Time/Item in ns (slowdown) on given DOP N |      |             |                     |                     |             |
|----------------|-------------------------------------------|------|-------------|---------------------|---------------------|-------------|
|                | Т                                         | N=1  | T/8         | T/4                 | T/2                 | T           |
| X86 Skylake-X  | 24                                        | 0.08 | 0.08 (1.0×) | 0.09 (1.1×)         | 0.09 (1.2×)         | 0.12 (1.5×) |
| X86 8275CL     | 96                                        | 0.08 | 0.08 (1.0×) | $0.10~(1.4 \times)$ | $0.17~(2.3 \times)$ | 0.18 (2.3×) |
| X86 Epyc       | 96                                        | 0.08 | 0.08 (1.0×) | $0.08~(1.0 \times)$ | $0.12 (1.5 \times)$ | 0.17 (2.3×) |
| ARM Graviton 1 | 16                                        | 0.34 | 0.34 (1.0×) | 0.36 (1.1×)         | $0.35~(1.0 \times)$ | 0.38 (1.1×) |
| ARM Graviton 2 | 64                                        | 0.20 | 0.20 (1.0×) | 0.20 (1.0×)         | $0.20 (1.0 \times)$ | 0.20 (1.0×) |
| ARM M1         | 8                                         | 0.07 | is $N = 1$  | $0.08~(1.1 \times)$ | $0.08~(1.1 \times)$ | 0.12 (1.7×) |
| PPC Power8     | 128                                       | 0.26 | 0.38 (1.4×) | 0.68 (2.6×)         | 1.27 (4.8×)         | 1.38 (5.2×) |
| PPC Power9     | 128                                       | 0.19 | 0.27 (1.4×) | $0.52(2.7\times)$   | 0.95 (5.0×)         | 1.04 (5.4×) |

#### Is Vectorization better for Joins?

|                | Best Flavor<br>Name   best (ms) |     |  |
|----------------|---------------------------------|-----|--|
| X86 Skylake-X  | vec(1024),3,1                   | 173 |  |
| X86 8275CL     | vec(512),3,2                    | 176 |  |
| X86 Epyc       | scalar,4,16                     | 134 |  |
| ARM Graviton 1 | scalar,0,1                      | 412 |  |
| ARM Graviton 2 | vec(1024),0,1                   | 101 |  |
| ARM M1         | vec(1024),4,1                   | 228 |  |
| PPC Power8     | vec(512),2,1                    | 488 |  |
| PPC Power9     | scalar,3,1                      | 317 |  |

#### Best Flavor on TPC-H

|                | Q1         | Q3            | Q6            | Q9            |
|----------------|------------|---------------|---------------|---------------|
| X86 Skylake-X  | scalar,0,1 | vec(2048),3,1 | vec(1024),3,1 | vec(1024),2,1 |
| X86 8275CL     | scalar,2,1 | scalar,3,8    | vec(512),4,1  | scalar,2,32   |
| Х86 Ерус       | scalar,2,1 | vec(256),1,1  | vec(1024),2,1 | vec(512),0,1  |
| ARM Graviton 1 | scalar,0,1 | vec(512),0,1  | scalar,4,1    | vec(256),0,1  |
| ARM Graviton 2 | scalar,2,1 | scalar,0,1    | vec(2048),2,1 | vec(512),0,1  |
| ARM M1         | scalar,0,1 | vec(2048),2,1 | scalar,3,1    | vec(1024),2,1 |
| PPC Power8     | scalar,0,1 | vec(1024),2,1 | vec(256),0,1  | scalar,2,2    |
| PPC Power9     | scalar,3,1 | vec(512),0,1  | vec(256),2,1  | scalar,2,8    |

## Is ARM slow (overall)?

|                        | ļ (  | Q1    | Q3   |       |  |
|------------------------|------|-------|------|-------|--|
|                        | x100 | hyper | x100 | hyper |  |
| Runtime (milliseconds) |      |       |      |       |  |
| X86 Skylake-X          | 79   | 54    | 261  | 282   |  |
| X86 8275CL             | 93   | 84    | 480  | 397   |  |
| Х86 Ерус               | 81   | 65    | 241  | 238   |  |
| ARM Graviton 1         | 188  | 107   | 447  | 447   |  |
| ARM Graviton 2         | 42   | 29    | 162  | 158   |  |
| ARM M1                 | 216  | 86    | 313  | 440   |  |
| PPC Power8             | 404  | 384   | 1094 | 1132  |  |
| PPC Power9             | 239  | 225   | 645  | 631   |  |

#### "Bang for the Buck"

|                            | $\frac{\$}{\text{hour}}$ | Cents per real core<br>hour | Q9 (ms) | 1M × Q9 (\$) |
|----------------------------|--------------------------|-----------------------------|---------|--------------|
| X86 Skylake-X (price est.) | 1.3392                   | 5.6                         | 228     | 84           |
| X86 8275CL                 | 0.9122                   | 1.9                         | 232     | 59           |
| X86 Epyc                   | 0.9122                   | 1.9                         | 193     | 49           |
| ARM Graviton 1             | 0.0788                   | 0.5                         | 720     | 16           |
| ARM Graviton 2             | 0.7024                   | 1.1                         | 95      | 19           |

### Takeaways

- ARM is slow?
- V outperforms DC on data-access?
- DC outperforms V on computation?
- Branching outperforms data-dependency?
- Scalable programs scale?

Not anymore (faster, cheaper) Sometimes Yes Sometimes Sometimes

Performance diversity is real: adapt or perish.

The best days of X86 are over.