Fluid Co-Processing: GPU Bloom Filters for CPU Joins

Tim Gubner* Diego Tomé* Harald Lang[^] Peter Boncz^{*}

Challenges in Co-Processing

- What can be offloaded?
 - DB algorithms rather data-intensive (shipping overhead)
 - Many do not reduce the amount of data
- How to offload?
 - Which device operates on what data?
 - Materialize table and send to GPU?
 - Send table chunks?
 - Due to time limitation: → Paper

Bloom Filters*

- Tells whether item is not in set
- Insert:
 - Hash item using k hash functions
 - Set bits in bitset
- Lookup:
 - Hash using k hash functions
 - If all bits are 1 → might be in set
 - Otherwise → definitely not in set
- Useful for selective joins

^{*} H. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors

Why Bloom Filters on GPU?

- Higher memory bandwidth (larger filters)
- Higher computational power (more hash functions)

Case Study: Parallel Hash Join

Lower Total Runtime

Faster Joins through Filter Offloading

Larger & faster Bloom Filters on GPU

Summary

- Offloading Bloom filter probing makes sense:
 - Not too much data movement
 - 6x faster on GPU
 - Allows large and precise Bloom filters (for large inner relations)
- Overall 3x faster
- For fluid-co processing and more details → Paper

