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Challenges in Co-Processing
● What can be offloaded?

– DB algorithms rather data-intensive (shipping overhead)
– Many do not reduce the amount of data

● How to offload?
– Which device operates on what data?
– Materialize table and send to GPU?
– Send table chunks?
– Due to time limitation: →Paper
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Bloom Filters*

● Tells whether item is not in set
● Insert:

– Hash item using k hash functions
– Set bits in bitset

● Lookup:
– Hash using k hash functions
– If all bits are 1 → might be in set
– Otherwise → definitely not in set

● Useful for selective joins

* H. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors
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Why Bloom Filters on GPU?
● Higher memory 

bandwidth 
(larger filters)

● Higher 
computational 
power (more 
hash functions)
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Case Study: Parallel Hash Join
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Lower Total Runtime
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Faster Joins through Filter Offloading
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Larger & faster Bloom Filters on GPU

CPU-only GPU+CPU

Co-Proc
Bloom probe
cheap

CPU-only
Bloom probe
expensive
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Summary
● Offloading Bloom filter probing makes sense:

– Not too much data movement
– 6x faster on GPU
– Allows large and precise Bloom filters 

(for large inner relations)

● Overall 3x faster
● For fluid-co processing and more details → Paper
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