
Fluid Co-Processing:
GPU Bloom Filters for CPU Joins

Tim Gubner* Diego Tomé*

Harald Lang^ Peter Boncz*

* ^

 2

Challenges in Co-Processing
● What can be offloaded?

– DB algorithms rather data-intensive (shipping overhead)
– Many do not reduce the amount of data

● How to offload?
– Which device operates on what data?
– Materialize table and send to GPU?
– Send table chunks?
– Due to time limitation: →Paper

 3

Bloom Filters*

● Tells whether item is not in set
● Insert:

– Hash item using k hash functions
– Set bits in bitset

● Lookup:
– Hash using k hash functions
– If all bits are 1 → might be in set
– Otherwise → definitely not in set

● Useful for selective joins

* H. Bloom: Space/Time Trade-offs in Hash Coding with Allowable Errors

 4

Why Bloom Filters on GPU?
● Higher memory

bandwidth
(larger filters)

● Higher
computational
power (more
hash functions)

 5

Case Study: Parallel Hash Join

 6

Lower Total Runtime

 7

Faster Joins through Filter Offloading

 8

Larger & faster Bloom Filters on GPU

CPU-only GPU+CPU

Co-Proc
Bloom probe
cheap

CPU-only
Bloom probe
expensive

 9

Summary
● Offloading Bloom filter probing makes sense:

– Not too much data movement
– 6x faster on GPU
– Allows large and precise Bloom filters

(for large inner relations)

● Overall 3x faster
● For fluid-co processing and more details → Paper

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

