
Designing an adaptive VM that combines

vectorized and JIT execution on

heterogeneous hardware

Tim Gubner

ICDE PhD Symposium, 2018

1



Modern hardware vs. data processing systems

CPU

GPU

ASIC

FPGA

Dark Silicon

2



State of the art

System CPU GPU FGPA ASIC

MonetDB 3

doppioDB 3 3

Ocelot 3 3

HyPer 3

MapD 3 3

CoGaDB 3 3

TensorFlow 3 3 ? 3

3



Goal

One system to rule them all

One system to bring them, and in Dark Silicon bind them

4



Idea

Domain-
specific
language

Adaptive
virtual
machine

CPU GPU FPGA ASIC

5



Virtual Machine



Compile or not to compile

• Compilation is time consuming (≥ 20 ms 1)

• Also noticeable in HyPer 2

• Compilers make assumptions.
Resulting code either:

• Static and concise

• Dynamic and bulky (code explosion)

Why would we ALWAYS want to compile EVERYTHING?

1Using LLVM C++ API and optimization passes
2Kohn et al. ”Adaptive Execution of Compiled Queries”, ICDE 2018

6



Compile or not to compile

• Compilation is time consuming (≥ 20 ms 1)

• Also noticeable in HyPer 2

• Compilers make assumptions.
Resulting code either:

• Static and concise

• Dynamic and bulky (code explosion)

Why would we ALWAYS want to compile EVERYTHING?

1Using LLVM C++ API and optimization passes
2Kohn et al. ”Adaptive Execution of Compiled Queries”, ICDE 2018

6



(Real) JIT-compilation

Interpret

Profile

Optimize

Compile

Create specialised
program (& guards)

Select worthy
sub-program(s)

Install new kernel
(& guards)

Collect runtime
information 
& traces

Adaptive by design

Low compilation effort

Ability to exploit multiple
hardware architectures

Aggressive workload-driven
optimizations

Mixed execution

7



Domain-Specific Language



The seek for the right level of abstraction

Low enough

• Micro-adaptivity 3

• Efficient interpretation

• JIT / incremental compilation

High enough

• Effcient execution on multiple devices

• Macro-adaptivity: e.g. reorder operations

Goal

Relation algebra → ? → Assembly, OpenCL ...

3Răducanu et al. ”Micro adaptivity in Vectorwise”, SIGMOD 2013
8



The seek for the right level of abstraction

Low enough

• Micro-adaptivity 3

• Efficient interpretation

• JIT / incremental compilation

High enough

• Effcient execution on multiple devices

• Macro-adaptivity: e.g. reorder operations

Goal

Relation algebra → ? → Assembly, OpenCL ...

3Răducanu et al. ”Micro adaptivity in Vectorwise”, SIGMOD 2013
8



The seek for the right level of abstraction

Low enough

• Micro-adaptivity 3

• Efficient interpretation

• JIT / incremental compilation

High enough

• Effcient execution on multiple devices

• Macro-adaptivity: e.g. reorder operations

Goal

Relation algebra → ? → Assembly, OpenCL ...

3Răducanu et al. ”Micro adaptivity in Vectorwise”, SIGMOD 2013
8



Why (another) DSL?

Relational algebra

Too high-level

(Scalar) Monad/Monoid comprehension

Weld 4, MRQL 5

High-level but per-tuple transformations lose information

4S. Palkar et al. ”Weld: A Common Runtime for High Performance Data

Analytics”, CIDR 2017
5Fegaras, L. ”An Algebra for Distributed Big Data Analytics”, 2016

9



Why (another) DSL?

C alikes

OpenCL, CUDA, Intel SPMD (ispc) ...

Too low-level

MonetDB assembly language

Heavily data-parallel, too low-level

a



Our vision

Data-parallelism as first-class citizen

• Data-parallel skeletons/patterns

Specialized operations on chunks of data

For example: map, filter, scatter, gather ...

• Lambda functions

• Immutable variables for intermediates (Static single

assignment form)

• Mutable variables for remaining state

• Partially typed (a ∈ DECIMAL(6,2) instead of a ∈
int64 t)

b



Skeletons

Op. map filter scatter gather ht ins merge

π 3

σ 3 3

./Hash 3 3 3 3 3

GHash 3 3 3 3 3

∪Hash 3 3 3 3 3

./Merge 3 3 3

Sort 3 (3) 3

Skeletons themselves do not need to be implemented data-parallel

(e.g. ht ins)...

c



Example

mut i

mut k

i := 0

k := 0

loop

let input = read i some_data in

let a = map (\x -> 2*x) input in

let t = filter (\x -> x>0) a in

let b = condense t

write x i a

write y k b

i := i + len(a)

k := k + len(b)

if i >= 4096 then

break

d



Plan



Plan

Base framework

DSL, vectorized interpreter

Dynamic VM

Workload-specific optimizations

Multiple target architectures

GPUs, potentially FPGAs

e



Takeaways

Domain-
specific
language

Adaptive
virtual
machine

CPU GPU FPGA ASIC

DSL

• Abstract enough for:
• Efficient portability
• Adaptive optimizations
• Efficient interpretation

• State of art does not fit!

• Data parallelism as first-class citizen

VM

• Interpret first, maybe compile later

• Cost-models are hard to get right!

• Adaptive by design

• Aggressive workload-driven

optimizations

• Mixed execution

f


	Virtual Machine
	Domain-Specific Language
	Plan

