
Adaptively Generating
Heterogeneous Execution Strategies

using the VOILA Framework

Tim Gubner



Problem: We want specific optimal Instances

Example: Book cover

- Some French word: VOILA / voilá
- Sword from some British story: Excalibur
- Some cat: Foppie

⇨ many possible covers

2



Problem: We want specific optimal Instances

Example: Book cover

- Some French word: VOILA / voilá
- Sword from some British story: Excalibur
- Some cat: Foppie

⇨ many possible covers

Often, we want the “best” instance

⇨ “best” often depends

3



4



Application to Database Management Systems

1. User issues a query

What’s the sum of the stored integers?

2. System computes result

110

5



Computing the Sum

Stored := 1, 1, 2, 2, 3, 3 … 10, 10 (first 10 natural integers, each twice)

“Naively” add each integer: 
(1+1+2+2+3+3+4+4+5+5+6
+6+7+7+8+8+9+9+10+10) = 
110

19 additions

6



Computing the Sum

Stored := 1, 1, 2, 2, 3, 3 … 10, 10 (first 10 natural integers, each twice)

7

“Naively” add each integer: 
(1+1+2+2+3+3+4+4+5+5+6
+6+7+7+8+8+9+9+10+10) = 
110

19 additions

Add each unique integer once, multiply by 2: 
2*(1+2+3+4+5+6+7+8+9+10) = 2 * 55 = 110

9 additions + 1 multiplication



Computing the Sum

Stored := 1, 1, 2, 2, 3, 3 … 10, 10 (first 10 natural integers, each twice)

8

“Naively” add each integer: 
(1+1+2+2+3+3+4+4+5+5+6
+6+7+7+8+8+9+9+10+10) = 
110

19 additions

Add each unique integer once, multiply by 2: 
2*(1+2+3+4+5+6+7+8+9+10) = 2 * 55 = 110

9 additions + 1 multiplication

2 * Gauß formula: 2* (N² + 
N)/2 = N²+N = 10 * 10 + 10 
= 110

1 addition + 1 multiplication



Computing the Sum

Stored := 1, 1, 2, 2, 3, 3 … 10, 10 (first 10 natural integers, each twice)

9

“Naively” add each integer: 
(1+1+2+2+3+3+4+4+5+5+6
+6+7+7+8+8+9+9+10+10) = 
110

19 additions

Add each unique integer once, multiply by 2: 
2*(1+2+3+4+5+6+7+8+9+10) = 2 * 55 = 110

9 additions + 1 multiplication

2 * Gauß formula: 2* (N² + 
N)/2 = N²+N = 10 * 10 + 10 
= 110

1 addition + 1 multiplication

More instance-specific



Instance-Specific Optimizations

10
More instance-specific

“Holy Grail”

- Too specific to be 
practical?

- Needs to be 
generated by 
computer



Instance-Specific Optimizations

11
More instance-specific

“Holy Grail”

- Too specific to be 
practical?

- Needs to be 
generated by 
computer

“Normal” Optimizations

- Not extremely 
specific

- Possibly
do-able



Instance-Specific Optimizations

12
More instance-specific

“Holy Grail”

- Too specific to be 
practical?

- Needs to be 
generated by 
computer

“Normal” Optimizations

- Not extremely 
specific

- Possibly
do-able



Smarter = Better?

13

#Integers Naive “Medium Smart” “Super Smart”

200 199 additions 99 additions, 
1 multiplication

1 addition,
1 multiplication

20 (example) 19 additions 9 additions,
1 multiplication

1 addition,
1 multiplication

2 1 addition 1 multiplication 1 addition,
1 multiplication



Smarter = Better?

Assume: an addition costs 1 and multiplication 10

Costs:

14

#Integers Naive “Medium Smart” “Super Smart”

200 199 109 11

20 (example) 19 19 11

2 1 10 11



Smarter = Better?

Assume: an addition costs 1 and multiplication 10

Costs:

15

#Integers Naive “Medium Smart” “Super Smart”

200 199 109 11

20 (example) 19 19 11

2 1 10 11



Smarter = Better?

Assume: an addition costs 1 and multiplication 10

Costs:

16

● “Smarter” not always better
● Runtime depends on many factors (static & dynamic)
● A system would need to make a choice

#Integers Naive “Medium Smart” “Super Smart”

200 199 109 11

20 (example) 19 19 11

2 1 10 11



This Thesis

Manual exploration:

- Data representations (e.g. number repeats)
- Algorithms optimized for specific cases
- Different implementation styles (“book cover layouts”)

VOILA: Framework to generate specific implementation styles

Excalibur: Automated exploration & adoption of better implementations, while query is running

17




