
Charting the Design Space of
Query Execution using VOILA

Tim Gubner Peter Boncz

(Some) Design Choices for HTAP/OLAP Systems
● Execution paradigm

○ Data-centric
○ Vectorized
○ Mixes (e.g. Relaxed Operator Fusion)

● Selective processing
○ None
○ Selection vector (indirection)
○ Bitmask (SIMD friendly)
○ Mixes

● Prefetching
○ Naive
○ State-machine-based (AMAC, IMV)

● Buffering
○ None
○ Intra-operator
○ Inter-operator

● Adaptivity
○ None
○ Micro (operation level)
○ Macro (operator/plan level) 2

● Memory layout
○ Columnar
○ Row-wise
○ Mixes (PAX)

● Granularity
○ Column
○ Vector
○ Block
○ Value
○ Partial value

● Compression
○ None
○ “Compressed Execution”
○ Storage

● Different algorithms
● NULL handling
● Overflow handling
● ...

(Some) Design Choices for HTAP/OLAP Systems
● Execution paradigm

○ Data-centric
○ Vectorized
○ Mixes (e.g. Relaxed Operator Fusion)

● Selective processing
○ None
○ Selection vector (indirection)
○ Bitmask (SIMD friendly)
○ Mixes

● Prefetching
○ Naive
○ State-machine-based (AMAC, IMV)

● Buffering
○ None
○ Intra-operator
○ Inter-operator

● Adaptivity
○ None
○ Micro (operation level)
○ Macro (operator/plan level) 3

● Memory layout
○ Columnar
○ Row-wise
○ Mixes (PAX)

● Granularity
○ Column
○ Vector
○ Block
○ Value
○ Partial value

● Compression
○ None
○ “Compressed Execution”
○ Storage

● Different algorithms
● NULL handling
● Overflow handling
● ...

A Glimpse into our Knowledge

Data-centric (compiled tuple-at-a-time,
e.g. Hyper)

+ Latency (of single tuple)
+ Computation
- Compilation time

4

Vectorized (column-slice-at-a-time,
e.g. Vectorwise)

+ Parallel memory access
+ Adaptivity
+ Profiling

A Glimpse into our Knowledge

Data-centric (compiled tuple-at-a-time,
e.g. Hyper)

+ Latency (of single tuple)
+ Computation
- Compilation time

5

Vectorized (column-slice-at-a-time,
e.g. Vectorwise)

+ Parallel memory access
+ Adaptivity
+ Profiling

Interaction with Features/Techniques?

● Prefetching always good?
● SIMD always good?
● Hybrids?
● Memory layout?
● Selective processing?
● ...

Interaction with Hardware?

● Huge L3 (> 100MB)?
● Slower cores (< 2 GHz)?
● ARM? RISC-V?
● “Crazy” design decisions (e.g. no L3)?
● Accelerators?
● ...

The State-of-the-Art Exploration Process

Domain Experts Implementers Knowledge

Design
Choices

Experiment

6

The State-of-the-Art Exploration Process

Domain Experts Implementers

Months - Years

Knowledge

Design
Choices

Experiment

7

Seeking Gold in the Design Space

Bad risk/reward trade-off

○ High initial investment
○ Low success rate
○ Vast highly dimensional space
○ Some good points already discovered

Consequences:

○ Underexplored
○ Understanding = Rules of Thumb
○ Vicious cycle of small improvements

Data Parallelism

Compilation

8

Seeking Gold in the Design Space

Bad risk/reward trade-off

○ High initial investment
○ Low success rate
○ Vast highly dimensional space
○ Some good points already discovered

Consequences:

○ Underexplored
○ Understanding = Rules of Thumb
○ Vicious cycle of small improvements

Time for a Change!

Data Parallelism

Compilation

9

The Rise of the Machines

Specification Code Generator Knowledge

Design
Choices

Experiment

10

The Rise of the Machines

Specification Code Generator Knowledge

Design
Choices

Experiment

Seconds - Minutes
(500,000x - 2,500,000x faster)

11

Challenges

How can we factor specific details out?

How can we synthesize them, later?

Paper

12

VOILA

= Variable Operator Implementation LAnguage

Idea:

● Performance-focussed, not necessarily elegant
● Data-parallelism via algorithmic patterns

Features:

● Predicates (instead of branches)
● Fix-pointer iteration (LOOP)
● Special statements to move data (EMIT)
● Tuples ([] and ())

13

hashjoin_probe(child):
 key = child[0]
 hash = hash(key)
 bucket = bucket_lookup(HT, hash)
 hit = seltrue(ne(bucket, 0))
 LOOP |hit:
 k = gather(HT.key, bucket)
 found = seltrue(eq(k, key))
 v = gather(HT.value, bucket) |found
 EMIT (k, v) |found
 bucket = gather(HT.next, bucket)
 hit = seltrue(ne(bucket, 0))

VOILA-based Synthesis

14

Q9 (Computation)

15

Takeaways

16

With VOILA, we can:

● Encode commonly used operators
● Synthesize many different flavors semi-automatic exploration
● Get top-notch performance

Future Work:

● More elegant VOILA?
● WCOJs in VOILA?
● More exploration?

17

