Charting the Design Space of
Query Execution using VOILA

Tim Gubner Peter Boncz

\ CWI_

(Some) Design Choices for HTAP/OLAP Systems

e [Execution paradigm e Memory layout
o Data-centric o Columnar
o Vectorized o Row-wise
o Mixes (e.g. Relaxed Operator Fusion) o Mixes (PAX)
e Selective processing e Granularity
o None o Column
o Selection vector (indirection) o Vector
o Bitmask (SIMD friendly) o Block
o Mixes o Value
® Prefetching o Partial value
o Naive e Compression
o State-machine-based (AMAC, IMV) o None
e Buffering o “Compressed Execution”
o None o Storage

o Intra-operator e Different algorithms
o Inter-operator e NULL handling

e Adaptivity e Overflow handling
o None PY

o Micro (operation level)
o Macro (operator/plan level)

(Some) Design Choices for HTAP/OLAP Systems

e [Execution paradigm e Memory layout
o Data-centric o Columnar
o Vectorized 7 D, —_ L Row-wise
o Mixes (e.g. Relaxed Operato{Fusin"' ». o Mixes (PAX)
e Selective processing S Granularity
o None Column
o Selection vector (indirectiog’ Vector
o Bitmask (SIMD friendly) \ Block
o Mixes Value
e Prefetching Partial value
o Naive ompression
o State-machine-based (AMAC o None
e Buffering o “Compressed Execution”
o None o Storage
o Intra-operator e Different algorithms
o Inter-operator e nULL handling
e Adaptivity e Overflow handling
o None °

o Micro (operation level)
o Macro (operator/plan level)

A Glimpse into our Knowledge

Data-centric (compiled tuple-at-a-time, Vectorized (column-slice-at-a-time,

e.g. Hyper) e.g. Vectorwise)
+ Latency (Qf single tuple) + Parallel memory access
+ Computation + Adaptivity

- Compilation time + Profiling

A Glimpse into our Knowledge

Data-centric (compiled tuple-at-a-time, Vectorized (column-slice-at-a-time,
e.g. Hyper) e.g. Vectorwise)
+ Latency (of single tuple) + Parallel memory access
+ Computation + Adaptivity
- Compilation time + Profiling
Interaction with Features/Techniques? Interaction with Hardware?

Huge L3 (> 100MB)?

Slower cores (< 2 GHz)?

ARM? RISC-V?

“Crazy” design decisions (e.g. no L3)?
Accelerators?

Prefetching always good?
SIMD always good?
Hybrids?

Memory layout?
Selective processing?

The State-of-the-Art Exploration Process

(]
Design s r 4 Experiment @
l K Choices

Domain Experts Implementers Knowledge

..

The State-of-the-Art Exploration Process

(]
V| e . Sy, -
Design s r 4 Experiment @
l K Choices
Domain Experts Implementers Knowledge
<€ >

Months - Years @

Seeking Gold in the Design Space

Bad risk/reward trade-off

High initial investment Mostly uncharted area

Low success rate \3‘\\6"“0“
co™

Vast highly dimensional space

Some good points already discovered

Consequences:

o O O O

o Underexplored Data Parallelism

o Understanding = Rules of Thumb
o Vicious cycle of small improvements

Seeking Gold in the Design Space

Bad risk/reward trade-off

High initial investment Mostly uncharted area

o)\
Low success rate p‘\\a’“0
co™
Vast highly dimensional space
Some good points already discovered

Consequences:

o O O O

o Underexplored Data Parallelism

o Understanding = Rules of Thumb
o Vicious cycle of small improvements

Time for a Change!

The Rise of the Machines

Design
Choices

Specification Code Generator

Experiment @

Knowledge

10

The Rise of the Machines

Design
Choices

Specification Code Generator

<€

Experiment @

Knowledge

>

Seconds - Minutes
(500,000x - 2,500,000x faster)

11

Challenges

How can we factor specific details out?

How can we synthesize them, later?

= Paper

12

VOILA

= Variable Operator Implementation LAnguage

ldea: i hashjoin probe(child): "~~~ T
key = child[0]
hash = hash (key)

e Performance-focussed, not necessarily elegant
bucket = bucket lookup (HT, hash)

e Data-parallelism via algorithmic patterns

hit = seltrue (ne (bucket, 0))
LOOP |hit:

found = seltrue(eqg(k, key))

v = gather (HT.value, bucket) |found
EMIT (k, v) |found

bucket = gather (HT.next, bucket)
hit = seltrue (ne (bucket, 0))

Predicates (instead of branches)
Fix-pointer iteration (Loop)

Special statements to move data (Em1T)
Tuples (1 and ())

Features: i k = gather (HT.key, bucket) i

13

VOILA-based Synthesis

Query ————————————>

HashGrfoupBy
HashJoin
Select Select

Lineitem Orders

Operator Library

HashJoin

VOILA

Build Probe

HashGroupBy

Build Scan

Pipeline 1

HashJoinBuild(T):

h = hash(T.A)

write(HT1._hash, h)

write(HT1.A, T.A)
Select(T):

T |pred = seltrue(T.A < 42)

EMIT (T.A) |pred
Orders():

pos = scan_pos(morsel)

|valid = selvalid(pos)

LOOP |valid:
a = scan(orders.A, pos)
EMIT (a)

pos = scan_pos(morsel)
|valid = selvalid(pos)

Back-Ends
Pipeline 2 EUF mixes:
HashGroupByBuild cbeputition
f |Vector. ||Scalar |
Hash]?inProbe | AVX || |
et Control
Lineitem Goto |[FsM |[...]
Pipeline 3 | Bl l
HashGroupByScan Direct

Vector. Data-
Volcano |[|Centric

Machine
Code
3: Scalar
2: Vector. +Goto
+FSM HashGroupBy
+Prefetch
Payload: HashJoin
Scalar 1: Vector.
Select Selgct *+Goto
Lineitem Orders

14

Q9 (Computation)

12.5 1

2000

3000 4000
Runtime (ms)

avxd12
scalar
v(1024)
v(2048)
v(256)
v(512)

1

5000

15

Takeaways

With VOILA, we can:

e Encode commonly used operators
e Synthesize many different flavors => semi-automatic exploration
e (et top-notch performance

Future Work:

e More elegant VOILA?
e WCOJs in VOILA?
e More exploration?

16

17

