
Excalibur

Tim Gubner* Peter Boncz

*Now at Huawei Cloud Norway,
research was done at CWI

A Virtual Machine for Adaptive Fine-grained
JIT-Compiled Query Execution based on VOILA

Background

A query has multiple possible implementations (“flavors”) “Design Space”

● Vectorized, data-centric, etc.
● With different performance characteristics1, depending on hardware2

● With increasingly heterogeneous hardware, likely to get worse

2

1Kersten et al. Everything You Always Wanted to Know About Compiled and Vectorized Queries But Were Afraid to Ask. VLDB 2018
2Gubner, Boncz. Highlighting the Performance Diversity of Analytical Queries using VOILA. ADMS 2021

VOILA Recap

(continuation of work on VOILA1)

● VOILA = Domain-Specific Language
● Generate different static implementations from one description

○ e.g. data-centric, vectorized, SIMD …

3

1Gubner, Boncz. Charting the Design Space of Query Execution using VOILA. VLDB 2021.

Challenge(s)

1. How can a query engine exploit the design space?
● Systems typically tied to one flavor (e.g. vectorized)
● Design space hardly predictable: online learning (adaptivity)

2. Can we explore more efficiently?
● VOILA used random sampling (not great?)
● Consequence of adaptivity, due to limited exploration time

○ Max. benefit, is at start of query (“asap”)
○ Excessive exploration will hurt performance

4

Excalibur

● JIT-compiling (vectorized) engine

● Exploring the design space is risky, no guarantee in finding good points

Primum non nocere = first, do no harm

● First execute using vectorized interpretation
● Then try to improve:

● First explore design space
● Exploit fastest point found

5

A Query in Excalibur

6

Hash Join

Filter Filter

lineitem orders

Scan Filter JoinBuildWrite

Scan Filter JoinProbe JoinCheck JoinGather

Pipeline 1

Pipeline 2

Implemented in VOILA
i.e. “white-box” operators

Query Plan Low-Level Plan

A Pipeline in Excalibur

7

Generate
code Execute Enough

budget?

Explore
new flavor

Exploit
best flavor
found

yes

no

Done?
no

Next pipeline or
produce result

yes

Generating Code

1. Apply high-level rewrite
rules

2. Select VOILA
fragments

3. Generate code for
fragments, or reuse
cached fragments

4. Generate byte code
with calls to fragments

8

Rather generic => Many possibilities!

Generating Code

1. Apply high-level rewrite
rules

2. Select VOILA
fragments

3. Generate code for
fragments, or reuse
cached fragments

4. Generate byte code
with calls to fragments

9

1. Inline operators
into last op.

2. Whole Pipeline
= Fragment

1. Intro.
Bloom
filter

Data-Centric

Execution

Bloom filter +

Vectorized
Execution

1. Reorder
ops

Diff. filter order

+ Vectorized

Execution

Excalibur vs. Analytical Systems

● Runtime in ms
● Multi-threaded on TPC-H

SF50

10

Q1 Q3 Q6 Q9

Umbra 287 326 91 854

DuckDB 1325 2338 341 15306

MonetDB 5488 1089 190 1178

Excalibur (heur) 192 349 52 730

Execution Tactics on TPC-H SF 50

11

Adaptivity in TPC-H Q6

(YEAR=1992, QUANTITY=1)

12

Summary

● No need to make static choices anymore!
● Have multiple flavors in Excalibur, and let the system take over

● Paper:
○ Utilize DSL to generate different flavors (VOILA)
○ Adaptivity in JIT-compiled system
○ Finding good execution tactics

● Open Source: https://github.com/t1mm3/db_excalibur

13

https://github.com/t1mm3/db_excalibur

14

