
Adaptively Generating
Heterogeneous Execution Strategies

using the VOILA Framework

Tim Gubner

The research reported in this thesis was carried out within the Database
Architectures group at Centrum Wiskunde & Informatica (CWI), the National
Research Institute for Mathematics and Computer Science in the Netherlands.

SIKS Dissertation Series No. 2024-26
The research reported in this thesis has been carried out under the auspices of
SIKS, the Dutch Research School for Information and Knowledge Systems.

VRIJE UNIVERSITEIT

ADAPTIVELY GENERATING

HETEROGENEOUS EXECUTION STRATEGIES

USING THE VOILA FRAMEWORK

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad Doctor aan
de Vrije Universiteit Amsterdam,
op gezag van de rector magnificus

prof.dr. J.J.G. Geurts,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de Faculteit der Bètawetenschappen
op vrijdag 4 oktober 2024 om 13.45 uur
in een bijeenkomst van de universiteit,

De Boelelaan 1105

door

Tim Karl-Heinz Gubner

geboren te Plauen, Duitsland

promotor: prof.dr. P. Boncz
copromotor: prof.dr. S. Manegold

promotiecommissie: prof.dr.ir. H.E. Bal
prof.dr. T. Neumann
prof.dr. G. Alonso
dr. A. Katsifodimos
dr. P. Tözün

To my parents, Ines and Karl-Heinz,
my wife, Marina,

and our son, Emil.

6

Contents

1 Introduction 15
1.1 Research Questions and Contributions 16
1.2 Thesis Outline & Publications . 18

2 Background 23
2.1 Increasingly Heterogeneous Hardware 23

2.1.1 Brief Introduction to Trends in CPU Architectures 23
2.1.2 Trends in CPU Architectures. 24
2.1.3 Trends in CPU Features . 25
2.1.4 Conclusion . 27

2.2 Abstraction using Virtual Machines 27
2.2.1 Notable Examples . 28
2.2.2 Conclusion . 29

2.3 Analytical RDBMS . 29
2.3.1 Relational Database Management Systems (RDBMSs) 29
2.3.2 Analytical RDBMS . 30
2.3.3 Conclusion . 31

2.4 Query Execution Paradigms . 32
2.4.1 Iterator-based Execution . 32
2.4.2 Data-Centric Compilation . 32
2.4.3 Columnar Execution . 33

7

CONTENTS

2.4.4 Vectorized Execution . 34
2.4.5 Relative Performance . 34
2.4.6 Conclusion . 35

2.5 Domain-Specific Languages . 35
2.5.1 Plans . 35
2.5.2 Comprehensions . 36
2.5.3 Vector Models . 37
2.5.4 Low-level Imperative Languages 37
2.5.5 Conclusion . 37

3 Compact Types & In-Register Aggregation 39
3.1 Introduction . 39
3.2 Compact Data Types . 39
3.3 In-Register (Group-By &) Aggregation 44
3.4 Evaluation . 48

3.4.1 Standard vs. In-Register Aggregation 48
3.4.2 Q1 Flavors . 49

3.5 Conclusion . 52

4 Compressed Hash Tables & Soviet Strings 55
4.1 Introduction . 55
4.2 Domain-Guided Prefix Suppression 56

4.2.1 Domain Derivation . 56
4.2.2 Prefix Suppression . 57
4.2.3 Compression and Decompression 58
4.2.4 Operating on Compressed Keys 60
4.2.5 Generating Pre-Compiled Kernels 60
4.2.6 Tackling the Packing Problem 60

4.3 Optimistic Splitting . 62
4.3.1 Optimistic Aggregates . 62
4.3.2 Other Applications . 64

4.4 USSR: A Dynamic String Dictionary 64
4.4.1 The Problems with Global Dictionaries 65
4.4.2 Unique Strings Self-aligned Region (USSR) 66
4.4.3 Data Structure Details . 67
4.4.4 Insertion . 68
4.4.5 Accelerating Hashing & Comparisons 68
4.4.6 Optimistic Splitting & the USSR 69

4.5 Evaluation . 69

8

CONTENTS

4.5.1 TPC-H Benchmark . 70
4.5.2 Public BI Benchmark . 74
4.5.3 Micro-Bench: USSR and Group-By 76
4.5.4 Micro-Bench: Join Probe Performance 76
4.5.5 Micro-Bench: Hash Join Key Domain 77
4.5.6 Micro-Bench: Memory Footprint against other Hash Tables . 78
4.5.7 Micro-Bench: Compression Overhead 78
4.5.8 Micro-Bench: Optimistic Splitting 79

4.6 Conclusion . 81

5 Encapsulating the Essence in VOILA 85
5.1 Introduction . 85
5.2 VOILA . 86

5.2.1 Core Concepts . 86
5.2.2 Language . 88

5.3 Formal Semantics of VOILA . 91
5.3.1 Expressions . 91
5.3.2 Statements . 92
5.3.3 Operators . 95

5.4 Common Relational Operators in VOILA 96
5.4.1 Scan . 96
5.4.2 Hash Group-By . 97
5.4.3 Hash Join . 98
5.4.4 Filter . 99

5.5 Multi-core Parallelism in VOILA . 99
5.5.1 Morsel-driven Parallelism . 99
5.5.2 Integration . 100

5.6 Conclusion . 100

6 Synthesizing Engines from VOILA 103
6.1 Introduction . 103
6.2 Direct Synthesizer Back-ends . 105

6.2.1 Data-Centric Program . 105
6.2.2 Iterator-based Vectorized Program 105

6.3 FUJI – A flexible back-end . 106
6.3.1 Component-based Flavor-Generation 107
6.3.2 Flexible Unified JIT Infrastructure (FUJI) 108
6.3.3 Mixing Flavors (BLEND) . 109

6.4 Evaluation . 111

9

CONTENTS

6.4.1 Design Space Exploration . 111
6.4.2 Impact of Components on Runtimes 112
6.4.3 VOILA vs. Hand-Optimized Code 114
6.4.4 VOILA vs. State-of-the-Art Prefetching 115
6.4.5 VOILA vs. State-of-the-Art Open-Source 116
6.4.6 Engineering Aspects . 117

6.5 Conclusion . 118

7 Performance is Relative 121
7.1 Introduction . 121
7.2 Methodology . 123
7.3 Micro-Benchmarks . 123

7.3.1 Memory Access . 124
7.3.2 Data-Parallel Computation 126
7.3.3 Control Flow & Data Dependencies 128
7.3.4 Case Study: Hash Join . 129

7.4 Macro-Benchmarks . 131
7.4.1 Query Performance . 131
7.4.2 Optimal Flavor . 132
7.4.3 Costs & “Bang for the Buck” 133

7.5 Conclusion . 135

8 Adaptive Virtual Machines 137
8.1 Introduction . 137
8.2 Background . 138
8.3 Excalibur . 139

8.3.1 Execution Model . 141
8.3.2 Interpretation . 142
8.3.3 Compilation into Vectorized Primitives 143
8.3.4 Code Cache . 145

8.4 Code Generation Flavors . 146
8.4.1 Atomic Fragments (Vectorized Execution) 146
8.4.2 Fused Statements (Data-Centric) 147

8.5 (Micro-)Adaptive Execution . 147
8.5.1 Constraints on Adaptive Execution 148
8.5.2 Exploitation . 149
8.5.3 Encoding the Design Space 150

8.6 Exploration Strategies . 151
8.6.1 Randomized Exploration (rand) 151

10

CONTENTS

8.6.2 Hard-Coded Heuristic (heur) 151
8.6.3 Monte Carlo Tree Search (MCTS) 152
8.6.4 Remembering the Past . 155

8.7 Experimental Evaluation . 156
8.7.1 State-of-the-Art Competitors vs. Excalibur 157
8.7.2 Impact of Risk Budget . 158
8.7.3 Various Scale Factors & Multi-Threading 159
8.7.4 Adaptation to Varying Query Parameters 160
8.7.5 Code Cache . 161
8.7.6 Adaptation over Query Runtime 163

8.8 Conclusion . 163

9 Conclusion & Future Work 167
9.1 Contributions . 167

9.1.1 Exploring the Design Space of Q1 168
9.1.2 Compressing Hash Tables & Strings 168
9.1.3 VOILA & Synthesis from VOILA 170
9.1.4 Performance Diversity . 171
9.1.5 Excalibur . 171

9.2 Reflections & Future Work . 173
9.2.1 Seeking the Holy Grail — Automated Discovery 173
9.2.2 Exploration Strategies . 173
9.2.3 Offloading to Heterogeneous Hardware 175
9.2.4 Final Reflections . 175

Bibliography 176

10 Summary 187

11 Publications 189

11

CONTENTS

12

Acknowledgements

First, I am deeply indebted to my direct supervisor, Peter Boncz. Thanks to Peter,
I had the freedom to pursue the concepts mentioned in this thesis, along with several
others (e.g. on benchmarking [RHGM18]). I especially want to express my gratitude
to Peter for the fantastic conversations and insights on both macro and micro-
optimizations that, usually, helped maximize (CPU) performance. His ongoing
feedback was invaluable; it really motivated me to enhance my work significantly.

Special thanks to Martin Kersten, who unfortunately passed away during my Ph.D.
Besides our interesting brainstorms on sometimes somewhat exotic ideas, he often
advised to challenge the consensus (his work often showed that as well). This generic
but, nevertheless, great advice stuck with me, as the following chapters will show
on multiple occasions.

Thanks to Stefan Manegold for helping me during the early days of my Ph.D. as
well as later on. Especially, I am very thankful for his feedback.

Many thanks to Thomas Neumann, Viktor Leis and Guido Moerkotte for their
early yet incredibly helpful feedback on this work (at the ICDE PhD Symposium
in Paris).

Thanks should also go to the committee members, Henri Bal, Thomas Neumann,
Gustavo Alonso, Asterios Katsifodimos and Pinar Tözün, for their time and effort
reviewing this thesis and taking part in the defense.

13

I am grateful to my office mate, Pedro Holanda – truly the best office mate anyone
could ask for! We had an outstanding time together, from “practicing” the hits of the
90s for Casablanca, or “killing rats” as some people might call it, to contemplating
possibly world-changing ideas such as the publicly shared wallet (Commie-Coin) or
brakes for databases.

I would like to extend my sincere thanks to Mark Raasveldt and Diego Tomé.
Together with Pedro, we four had lots of fun and some great years together.

Many thanks to Niels and Arjen for quickly fixing IT issues and, more importantly,
installing new and (sometimes) exotic hardware. Furthermore, I had the pleasure
of working with Azim, Daniël, Dean, Eyal, Gabor, Hannes, Hassan, Ilaria, Laurens,
Leonardo, Madelon, Matheus, Nantia, Pedro F., Sjoerd among other members of
the Database Architectures group at CWI, MonetDB Solutions and DuckDB Labs.

I am extremely grateful to my wife, Marina, who has kept my spirits and motiva-
tion high, especially in the process of getting my first big (non-workshop) paper
published (which came with almost a handful of rejections).

Furthermore, I also want to thank my German friends who helped me keep my
sanity, Dominik, Erik, Isabell, Marcus, Martin H., Martin K., Steve as well as
Susann.

Finally, I would also like to thank my cat, Foppie, for emotional support and pro-
viding a great excuse from finishing this document.

14

CHAPTER 1

Introduction

Since the beginning of computers, we have been using machines to analyze data
to find answers to seemingly important questions. The challenge of developing a
program to compute these answers efficiently was usually solved by programmers.
Solving many different questions for different architectures, and maintaining them,
must have been incredibly tedious (i.e. a nightmare).

DBMS. A couple of years later emerged the Database Management System (DBMS).
DBMSs are systems that abstract data storage and data access. For users of DBMSs,
this brings several advantages. For example, data can be stored in optimized for-
mat(s) that better facilitates certain access patterns, or index structures can be
added to allow faster reads and updates of certain cells. A DBMS can ship multiple
such methods, while also providing certain guarantees, most notably data consis-
tency. Thus, the user does not have to re-implement these methods but can use a
DBMS instead.

Query Execution. One important aspect of DBMSs is their ability to evaluate
queries (query execution). DBMSs, often allow queries formulated in high-level
languages and do not require the user to write a rather complicated program to
extract answers from data in a specific layout.

15

1.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

To evaluate queries, a DBMS typically compiles the high-level program into a low-
level program. In particular, we focus on relational DBMS which translate SQL to
a directed acyclic graph with specific operators based on relational algebra (query
execution plan, or plan).

Especially for complex queries on a large and often increasing amount of data, per-
formance of query execution became, and still is, an important factor for the overall
performance. Therefore, in modern DBMSs, query execution tries to squeeze the
most out of current hardware, and current methods (vectorized [BZN05] and data-
centric [Neu11] execution) are efficient, i.e. roughly as fast as naive implementations
written by hand.

1.1 Research Questions and Contributions

Query execution techniques (e.g. vectorized [BZN05] or data-centric [Neu11] exe-
cution) are rather generic, typically for implementation and maintenance reasons.
This raises the question, of whether performance can be further improved with op-
timizations specific to the combination of data, query and environment, so-called
instance-specific optimizations. Such situations can create opportunities for further
optimizations. For example, a join with a tiny inner relation, of say one tuple,
can be rewritten into a filter which, in case of a hash join, consequently removes
memory-access and hash probing overhead. In practice, such a join might not be
detectable before executing the query (i.e. at query optimization time) as we need
to verify the upper bound on the cardinality of the inner relation, and cardinality
estimation is often inaccurate by orders of magnitude [LGM+15]. Thus, our upper
bound is likely “off” by a margin that makes our optimization not worth the effort
(e.g. if we allow such joins for inner relations with one row, but the upper bound
reports ≤ 100 rows). Similarly, other techniques can be applied as well to “cut
corners”. In particular, we wonder how a human, given a total understanding of
the environment (query, data distributions as well as software and hardware setup),
would implement a query that requires minimal runtime. We, therefore, posed the
first question:

Research Question 1: How far can query plans be optimized to the
specific instance?

Research Question 1 is investigated by the Chapters 3 and 4.

16

1.1. RESEARCH QUESTIONS AND CONTRIBUTIONS

Chapter 3 explores how a relatively simple query (TPC-H Q1) can be optimized
further given the specific instance of the problem (low number of groups in group-by,
limited ranges of values, almost all rows surviving the filter, relatively arithmetic-
intensive).

Chapter 4 discusses compressing hash tables, an often used data structure in query
engines, and exploiting compression during lookup operations (key equality checks).
Therefore, tuning query execution to specific data distributions.

Part of tailoring implementations specifically to the environment concerns hard-
ware. Modern hardware has become (and is becoming) increasingly heterogeneous.
This trend happens in multiple dimensions: Frequently, systems feature CPUs as
well as GPUs (e.g. smartphone, laptop, desktop, cloud) and different CPU architec-
tures became important (e.g. ARM for smartphones, laptops and servers, RISC-V),
but also on the same CPU architectures there exist features that can significantly
accelerate certain operations (SIMD, encryption, compression). Query engines are,
typically, rather static constructs optimized for a handful of systems (or less). How-
ever, in a world dominated by increasingly heterogeneous hardware, they become
increasingly unable to exploit all resources of the underlying system. While query
engines can be optimized for more systems, this will likely add new code paths
that need to be tested and maintained. Additionally, code needs to be added that
chooses the best path which, in practice, also needs to guarantee robust perfor-
mance. With a high degree of heterogeneity, both, maintaining and choosing code
paths, will become practically unfeasible. Therefore, we pose the second question:

Research Question 2: How can query engines exploit increasingly
heterogeneous modern hardware?

Research Question 2 is investigated in the Chapters 5 to 8.

Chapters 5 and 6, we propose using the domain-specific language VOILA to synthe-
size many different implementations (flavors) of a given query. Besides the flexibil-
ity, VOILA also can serve as an extensible abstraction between high-level relational
operators (physical operators) and low-level machine code. With the emergence of
new accelerators (e.g. triggered by specific intrinsics), new code generation rules or
constructs can be added to VOILA. However, the VOILA framework also facilitates
the automated discovery of “good” flavors, instead of implementing flavors by hand.

The following chapter (Chapter 7) investigates how current query execution para-
digms (Data-Centric and Vectorized Execution, and variations thereof) perform on

17

1.2. THESIS OUTLINE & PUBLICATIONS

various hardware architectures. If there exists a significant performance diversity
on current/modern hardware, code generation is required to synthesize many fla-
vors, because it is typically not known which will perform best. Thus, static query
engines, which focus on one flavor (typically either Vectorized or Data-Centric),
might be unable to perform optimally.

Chapter 8 presents Excalibur, a framework that automatically explores the design
space micro-adaptively while the query is running. Thus, tuning the query to the
specific instance.

1.2 Thesis Outline & Publications

This thesis reflects my journey from manually navigating the design space through
hand-implemented optimizations, to identifying a technique for automating this
process, culminating in the creation of an adaptive virtual machine that exploits the
design space to minimize query response times. Apart from the manual exploration,
this thesis follows the ideas and plan outlined at the ICDE PhD Symposium [Gub18]:

• The proposal describes that, first, the design space should be abstracted using
a domain-specific language. Afterward, this language can be exploited to
adaptively choose new implementation flavors (i.e. generate and actually run
them):

– Tim Gubner. Designing an adaptive VM that combines vectorized and
JIT execution on heterogeneous hardware. IEEE International Confer-
ence on Data Engineering (ICDE) – PhD Symposium, 2018

Outline & Publications. The first chapter (Background) discusses background
necessary for understanding this thesis.

The following two chapters are case studies that showcase the potential specific
points in the design space have to offer:

• Analytical queries often perform arithmetic, e.g. to compute the tax rates.
Chapter 3 (Compact Types & In-Register Aggregation) explores shrinking the
width of data types to increase the SIMD throughput of arithmetic operations.
Additionally, it highlights that group-by and aggregation can be implemented
more efficiently, for a low number of groups. The research in this chapter is
based on:

18

1.2. THESIS OUTLINE & PUBLICATIONS

– Tim Gubner and Peter Boncz. Exploring Query Execution Strategies
for JIT, Vectorization and SIMD. Workshop on Accelerating Analytics
and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS), 2017

• The performance of analytical queries is often limited by the memory-access
costs caused by group-by, join operations, as well as operations on strings.
Chapter 4 (Compressed Hash Tables & Soviet Strings) explores how compres-
sion of intermediate data structures, i.e. hash tables and strings, can reduce,
both, memory-access cost and memory footprint. The research is based on
two publications. The first won the award for the best research paper. Later,
our work was selected by SIGMOD Record, leading to the second publication:

– Tim Gubner, Viktor Leis and Peter Boncz. Efficient Query Processing
with Optimistically Compressed Hash Tables & Strings in the USSR.
IEEE International Conference on Data Engineering (ICDE), 2020

– Tim Gubner, Viktor Leis and Peter Boncz. Optimistically Compressed
Hash Tables & Strings in the USSR. SIGMOD Record, 2021

The previous case studies relied on manual, and arguably repetitive, engineering
efforts. Therefore, the following two chapters will discuss using a domain-specific
language to (1) abstract query execution and (2) generate specific implementations
(flavors) from that language. Utilizing a domain-specific language, we can explore
the design space more efficiently, by synthesizing different implementations from
one description, but are, also, more future-proof as details are abstracted away:

• Chapter 5 (Encapsulating the Essence in VOILA) addresses abstracting query
execution details using a domain-specific language (VOILA), and is based on:

– Tim Gubner and Peter Boncz. Charting the Design Space of Query
Execution using VOILA. International Conference on Very Large Data
Bases (VLDB), 20211

• In the following chapter (Synthesizing Engines from VOILA), VOILA is used
to explore the design space. This chapter is also based on:

– Tim Gubner and Peter Boncz. Charting the Design Space of Query
Execution using VOILA. International Conference on Very Large Data
Bases (VLDB), 20211

1Research was extended and split into two chapters.

19

1.2. THESIS OUTLINE & PUBLICATIONS

The experimental evaluation in the two previous chapters was limited to one to two
machines (sets of hardware). However, in practice, the hardware environment is
often uncontrollable (from the software developer’s side).

• Engines typically focus on one specific flavor. In Chapter 7, we explore how
different CPUs and hardware architectures affect the performance of certain
flavors:

– Tim Gubner and Peter Boncz. Highlighting the Performance Diversity of
Analytical Queries using VOILA. Workshop on Accelerating Analytics
and Data Management Systems Using Modern Processor and Storage
Architectures (ADMS), 2021

The previous chapters discussed how specific design points for query execution sys-
tems can be generated in an automated manner. However, they required (a) know-
ing which point (flavor) to generate, and (b) incurred significant compilation time as
they generated source code (plain text) which was later compiled. Both make design
space exploration rather time-consuming and impractical for database systems:

• The following chapter (Adaptive Virtual Machines) demonstrates how the de-
sign space flexibility can be dynamically exploited at query runtime. This
chapter is based on:

– Tim Gubner and Peter Boncz. Excalibur: A Virtual Machine for Adap-
tive Fine-grained JIT-Compiled Query Execution based on VOILA. In-
ternational Conference on Very Large Data Bases (VLDB), 2023

• In the last chapter (Conclusion & Future Work), we present the insights and
conclusions gained and provide directions for future research.

20

1.2. THESIS OUTLINE & PUBLICATIONS

Publications not part of this thesis. My journey led to numerous publica-
tions. Unfortunately, some publications do not contribute enough to the core of
this thesisbut, nevertheless, deserve to be mentioned:

• While GPUs offer high memory-bandwidth and high computational power,
real-life performance is often limited by data transfers from/to GPU. The
work investigates how (a) data can be transferred more efficiently by using
compression and how (b) a complete query (TPC-H Q1) can benefit from
execution on CPU and GPU, in parallel.

– Diego Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg and Peter
Boncz. Optimizing Group-By And Aggregation using GPU-CPU Co-
Processing. Workshop on Accelerating Analytics and Data Management
Systems Using Modern Processor and Storage Architectures (ADMS),
2018

• The bandwidth limitations of transfers from/to GPUs often disqualify GPU
as accelerators for certain tasks during query execution. To benefit from
GPUs, such a task needs limited input and output. The work highlights how
selective joins can be improved by using early pruning with Bloom filters and
how Bloom filters can efficiently be (dynamically) offloaded to the GPU.

– Tim Gubner, Diego Tomé, Harald Lang and Peter Boncz. Fluid Co-
processing: GPU Bloom-filters for CPU Joins. Workshop on Data Man-
agement on New Hardware (DaMoN), 2019

21

1.2. THESIS OUTLINE & PUBLICATIONS

22

CHAPTER 2

Background

2.1 Increasingly Heterogeneous Hardware

Recently, hardware has become more heterogeneous. We observed a divergence from
the previously mainly generic X86-CPU-based hardware (one instruction set, one
development target) to a broader platform with multiple devices, each one “good”
at rather specific tasks (multiple targets with multiple instruction sets, optimized
for different purposes).

In this chapter, we describe the current hardware trends and how they impact
software design. First, we discuss trends in hardware architecture. Afterward, we
dive into trends in CPU architecture, followed by trends in CPU features. Finally,
we summarize the findings and their impact on software design.

2.1.1 Brief Introduction to Trends in CPU Architectures

Faster Clock Frequencies. Since the early beginnings of CPUs, it has been
possible to increase performance by increasing clock frequencies while fitting more
transistors on the chip. Applications could conveniently benefit from these improve-

23

2.1. INCREASINGLY HETEROGENEOUS HARDWARE

ments without requiring changes, i.e. the era of “free lunch”. Unfortunately, this
era did not last forever.

More Cores. When clock frequencies started to stagnate, processor manufacturers
started adding more cores to the chip. This was easily possible, as transistor sizes
were decreasing further, thus providing enough area for additional cores. Unfor-
tunately, benefiting from this trend, the multi-core trend, required changes on the
software-side (efficiently utilizing multiple threads). As time has shown, also this
trend has come to an end.

Application-Specific Accelerators. When it was not (easily) possible anymore
to add more cores (due to limitations imposed by heat emission), processors started
to include specific accelerators. Usually, such accelerators exist for very demanding
applications with wide use, e.g. graphics, encryption or artificial intelligence. This
is the trend du jour. For applications, this means that the underlying hardware
is becoming more heterogeneous. To provide optimal performance, application de-
velopers will have to find good tasks for each accelerator, in the hope to elevate
application-specific bottlenecks. Likely, this will require rethinking traditional soft-
ware and larger, potentially architectural, changes.

2.1.2 Trends in CPU Architectures.

For decades, the market for processors for laptops, desktops, and servers was dom-
inated by CPUs with the X86 architecture which made X86 the de facto standard
for software development. X86-based CPUs are typically developed by Intel and
AMD. But there exist also implementations by other entities, like e.g. the Zhaoxin
KaiXian [Alc20]. However, recent pushes into ARM- and RISC-V-based processors
seem to threaten the X86’s hegemony:

ARM. First, ARM-based architectures started to dominate the market for smart-
phones. Over the years, ARM tried to enter the many-core server market (e.g.
with the Cavium ThunderX [DG16]). With the AWS Graviton 1 and 2 [Ama21a],
ARM started to enter the cloud market. Meanwhile, ARM entered the laptop
market (with mostly high-end smartphone chip sets, e.g. Chromebook-branded
laptops [Var21, Sam12]). More recently, Apple switched to ARM-based laptops
(Apple M1 [App21]). Consequently, ARM-based architectures captured a higher
share of the laptop market. Recent high-performance ARM-based chips, like the
Graviton 2 [Ama21a] and 3 [Ama23], tend to threaten X86’s hegemony in terms of
performance as well as power usage. A noteworthy development is the emergence of
data center CPUs by NVIDIA with the Grace CPU [NVI]. Even more interestingly,

24

2.1. INCREASINGLY HETEROGENEOUS HARDWARE

the Grace can be combined with a GPU to a “Grace Hopper Superchip” [NVI].
Notably, the push towards ARM is not limited to the Western hemisphere, as Al-
ibaba [Shi21] and Huawei [Hua19, XCZ+21] presented their own ARM-based CPUs.

RISC-V. Besides pushes into ARM-based architectures, the European Proces-
sor Initiative (EPI) [euR24] and Alibaba [ris21] are developing/developed RISC-
V-based processors. Most notably, the EPI tries to establish a European processor
for high-performance computing that is relatively easily extensible with application-
specific accelerators [EPI24].

ARM and RISC-V vs. X86. Both, ARM and RISC-V, share one major advan-
tage: It is possible to license a ready-made chip design, extend with application-
specific optimizations (e.g. accelerators), send the design to a fab and receive a
chip optimized for certain applications (sufficient funds assumed). That is some-
thing that was previously very challenging to achieve and required a certain scale
(e.g. Microsoft and Sony repeatedly managed to obtain somewhat customized AMD
chips for their gaming consoles [Son, Shi13, LR20, Mic]). However, with this newly
obtained freedom, many other companies with “deep pockets” can relatively easily
create their own semi-custom chips. If this trend continues, we will likely see many
slightly different ARM or RISC-V chips optimized for very specific tasks.

Conclusion. The rule of X86 in the laptop, desktop, and server market is under
attack by ARM and, potentially, RISC-V. One major advantage ARM and RISC-V
have is an easy path to a customized chip design for specific applications (designs
can be licensed). Should this trend persist, it is probable that CPU architectures
will become increasingly heterogeneous. While it is possible to write portable code,
optimal performance is not guaranteed. Specifically for performance-critical soft-
ware, this is a major challenge, as it needs to run “well” on all possible architectures.

2.1.3 Trends in CPU Features

So far, we have observed that both, system architectures and CPU architectures,
seem to drift towards semi-customization with application-specific optimizations.
This trend can even be observed within a single CPU architecture. Here, we analyze
recently introduced CPU features.

X86. Over the years, new instructions were added to X86. Typically, these are
very specific optimizations that can be harnessed to significantly accelerated certain
tasks, as e.g. indicated in Table 2.1. These optimizations instructions reach from
encryption to inference on neural networks.

25

2.1. INCREASINGLY HETEROGENEOUS HARDWARE

Table 2.1: Selected CPU features able to accelerate certain tasks.

Instruction Set Instruction Interesting Use-Case(s)
AES Acceleration for AES encryption

Near-cryptographic hash function for strings [Gör13]
POPCNT popcnt Number of one bits in word
BMI1 tzcnt Count trailing zero bits

bextr Extract contiguous bits
Selection pushdown [LLC23]

SSE4.2 crc32 Check sum (CRC32)
String hash [KLK+18]

SSE4.2 pcmpestri String comparisons
AVX512-F vpcompress & vexpandp Buffering [LPK+20, FZW19])

vpcompress Selection vector creation [KLK+18]
vperm In-register lookup tables (Chapter 3)

AVX512-CD vpconflict Duplicate detection & conflict avoidance (Chapter 3)
RLE compression [UPD+18]

AVX512-VBMI/VBMI2 Extended support for smaller bit-widths (Chapter 3)
AVX512-VNNI Acceleration for neural networks

vp4dpwssd Multiple dot products
AVX512-VP2INTERSECT vp2intersectq Pair-wise intersection
GFNI Galois Field, affine transformations

Error correction, cryptography [gfn20]
Accelerator Description

Advanced Matrix Extensions (AMX) Operations on matrices (e.g. machine learning) [Intd]
In-Memory Analytics Accelerator (IAA) Compression, filtering, encryption [Int23]
Data Streaming Accelerator (DSA) Data generation, comparisons & copying [Inta]

Cloud. The recent advent of cloud computing, or more generally multi-tenant
computing, also had its influence on CPU features.

Especially, avoiding data leaks between concurrently running tenants is challenging.
With SGX [Intb], Intel introduced Enclaves, i.e. private scratch memory for applica-
tions, when a context switch happens, the private memory is encrypted and written
into the main memory. Since this private memory has a limited size [EHZH+22],
the application needs to ensure that all sensible data will fit.

Machine Learning. Similar the Cloud, the recent rise of Machine Learning left its
footprints on CPU features. Typical ML tasks are compute- and memory-intensive
and often involve matrix multiplications with floating-point numbers (e.g. used in
neural networks). Relatively recent CPU features such as AMX and AVX512-VNNI
appear to be crafted to accelerate machine learning workloads [Intd, Intc].

AWS Graviton 2. As a CPU typically only found in the cloud, the AWS Gravi-
ton 2 offers very cloud-specific features, such as “always-on fully encrypted DDR4
memory” [Ama20] and hardware-accelerated cloud management (Nitro) [Ama19].
Transparently encrypted memory is useful when the machine is moved between
tenants, such that the next/other tenant(s) cannot access the previous tenant’s,

26

2.2. ABSTRACTION USING VIRTUAL MACHINES

possibly important, data, thus mitigating the risk of data leaks, but without requir-
ing important data to fit into a fixed-size enclave (as SGX). Besides, the Graviton
also features acceleration for data compression [Ama19].

2.1.4 Conclusion

From the current trends, it appears that hardware is becoming increasingly hetero-
geneous. New processors can use a different architecture (e.g. ARM) extended with
accelerators for very specific tasks. For software, this heterogeneity poses a major
challenge as different accelerators can require major changes on the software-side
(e.g. generating GPU code inside a database system). Complex software systems
(such as database systems) cannot cost-efficiently support many different acceler-
ators, as they might require very different implementations. Thus, if we do not
solve this challenge, complex software might be unable to fully exploit the current
hardware, and more-so benefit from future hardware improvements.

It is not clear how we can exploit specific accelerators cost-efficiently, without
having to rewrite our software for each accelerator.

2.2 Abstraction using Virtual Machines

A virtual machine (VM) is a conceptual machine that allows the execution of pro-
grams formulated in some instruction set. Arguably, this definition is very general.
Typical examples are VMs used for:

• Virtualization, emulating a different environment within a host, e.g. Virtual-
Box, QEMU, Xen, Hyper-V

• Executing programs (instruction set = language, virtual machine = inter-
preter), e.g. JVM, LuaJIT, PyPy

• Compiling programs (instruction set = language, virtual machine = compiler),
e.g. LLVM

VMs to Execute Programs. In this thesis, we focus on the aspect of using
VMs to execute programs. In the most basic instance, such a VM is just an inter-
preter for the language (e.g. interpreting the language instruction by instruction;
or function by function). Depending on the language, interpretation can have sig-
nificant overhead compared to statically compiled code (interpretation overhead).
Besides this disadvantage, VM-based execution minimizes the required compilation
time (compared to static compilation) and allows optimizing specific parts of the
program.

27

2.2. ABSTRACTION USING VIRTUAL MACHINES

JIT-Compilation. For instance, VMs often generate compiled code for certain
parts of the program (Just-In-Time-Compilation, or JIT-Compilation). Typically,
traces are gathered during interpretation and later optimized code for (hot) traces
is generated, so-called trace-based JIT-compilation (used by HotpathVM [GPF06],
TraceMonkey [GES+09], LuaJIT [Pal09], SPUR [BBF+10], PyPy [BCFR09]). More
generically, VMs can optimize frequently executed code (e.g. the HotSpot VM
for Java [PVC01]). When certain conditions are met, JIT-generated code has the
chance to beat statically compiled code (e.g. if object types are known, expensive
virtual method calls can be removed). Besides, machine-specific code can be JIT-
ted which can be advantageous when the target machine is not known beforehand.
In practice, code often has to be compiled for the target machine that is the least
common denominator. Optimizations for newer features (AVX-512, AES ...) require
special extensions as well as detection at runtime (e.g. via the cpuid instruction).

2.2.1 Notable Examples

In the following, we highlight examples of VMs. We start with the Java Virtual
Machine, followed by the Android ecosystem, LLVM and LuaJIT.

Java and the Java Virtual Machine (JVM). The unique selling point of the
Java ecosystem has been the mantra of portable code: write once, run anywhere.
Thus, not requiring code modifications to run on other machines (including esoteric
architectures) as long as there is a JVM for that platform1.

From the user’s perspective, Java code is first compiled into byte code. This byte
code is portable and can be executed on any host with a JVM. Over the years,
many JVMs have been created (e.g. HotSpot, Graal, IBM) and each allows different
optimizations at runtime for different architectures.

Android (Dalvik and Android RunTime). Closely related, to Java and the
JVM, is the Android platform, which is often used on mobile devices (smartphones,
smartwatches, tablets). Android programs are commonly written in Java, or other
JVM languages, and compiled to JVM byte code. Before execution of the program,
it is then, on Android, compiled to Dalvik byte code (DEX [and20]).

Android started with a VM that interpreted Dalvik byte code, the Dalvik VM [Fru14].
Later, a JIT-compiler [Fru14] was added. Eventually, due to suboptimal perfor-

1Similar to portable C code that can be compiled, and later executed, wherever there is a C
compiler. However, C code requires an additional compilation step.

28

2.3. ANALYTICAL RDBMS

mance, Dalvik got replaced by the Android RunTime (ART) that compiles byte
code into native instructions [Fru14].

LLVM started as a toolkit for multi-stage optimization [Lat02]. But nowadays,
LLVM is a “full-blown” compiler framework [LA04]. It comes with multiple compiler
front-ends (e.g. for C and C++) that generate an Intermediate Representation
(LLVM IR; virtual instructions). Based on LLVM IR, many optimizations can be
applied until either a back-end emits machine code (e.g. X86, ARM, WebAssembly)
or the IR is interpreted directly (as e.g. Kohn et al. [KLN18] did). The power of the
LLVM framework lies in the shared representation (LLVM IR) that allows sharing
optimization passes between compilers. Thus, LLVM eases the effort required to
develop new compilers with good end performance.

LuaJIT is a VM for executing Lua code. Contrary to the regular Lua VM (lua.

org), LuaJIT [Pal09] features a lightweight trace-based JIT-compiler with addi-
tional optimizations. Interestingly, LuaJIT runs on many architectures (e.g. X86,
ARM, PPC, MIPS) while being “widely considered [...] one of the fastest dynamic
language implementations” [Pal].

2.2.2 Conclusion

VMs define programs in the means of emulating some machine’s instruction set. As
instructions are executed, VMs can apply optimizations that are target-specific or
specific to the instance (e.g. less frequently executed code requires fewer optimiza-
tions with similar end-performance). Thus, VMs provide the platform to modify
the physical execution while the program is running (“mid-flight”).

2.3 Analytical RDBMS

Since the early days of computers, applications that manage data, so-called Data-
base Management Systems (DBMSs), became popular. Nowadays, a plethora of
such systems exist, reaching from spreadsheet software to fully featured systems
that provide certain guarantees.

2.3.1 Relational Database Management Systems (RDBMSs)

Since the term DBMS is quite general, we focus on a subset. The, so called, Rela-
tional Database Management Systems (RDBMSs), are DBMSs using the relational
model [Cod83]. In the relational model, data is presented in tuples, which are
grouped into relations.

29

lua.org
lua.org

2.3. ANALYTICAL RDBMS

RDBMSs store and provide access to tables (which are relations). Queries in
RDBMSs are typically decomposed into operations on such relations with set/bag
semantics (relational algebra).

Nowadays, users interact with an RDBMS using a (arguably, more or less) stan-
dardized language SQL, which provides means to define schemata, modify and query
data. SQL is a high-level declarative language. Thus, evaluating queries requires
lowering SQL into a lower-level representation, which is usually some form of rela-
tional algebra (query plan). Typically, there are many implementations of a SQL
query, often also with highly different runtimes. Therefore, an RDBMS commonly
tries to find a cost-minimal implementation via some cost model. After finding an
implementation, the query plan is evaluated (query execution) and should2 eventu-
ally return the answer (of the query).

Transactional Workload. Typically, RDBMSs were used to handle transac-
tional workloads (i.e. many data modifications using rather simple queries). For
this purpose, RDBMS usually include certain index data structures that accelerate
access to certain tuples. Thanks to the rather simple queries, queries often signifi-
cantly benefit from indexes and, thus, efficient query execution (physical evaluation
of a query, after optimization of the query plan) is less relevant.

2.3.2 Analytical RDBMS

Various users of DBMSs tend to analyze the stored data. Such queries are typi-
cally rather complex, read-intensive and long-running. Data modifications tend to
happen relatively rarely and in bulk.

With the increasing volume of data, DBMSs emerged that are optimized for these,
analytical, workloads. Notable examples include MonetDB [IGN+12], Vector/Vec-
torwise [BZN05], DB2 BLU [RAB+13] as well as C-Store [SAB+05]. Compared
to the “old DBMSs”, these systems differ in the way they store data, handle data
modifications and evaluate queries.

Data Storage. Since these queries (i.e. analytical queries) are read-intensive and
often read large amounts of data, data tends to be stored compressed and in a
columnar layout. Compression tends to increase the net read bandwidth and allows
storing more data closer to the CPU [ZHNB06].

2Arguably, “will” is the better word. But, assuming SQL (with common table expression and
window functions) is Turing complete [Pos11], non-terminating queries are possible.

30

2.3. ANALYTICAL RDBMS

Columnar layout stores each column in separate memory regions. A columnar
layout provides multiple advantages beneficial to data analytics: (1) When not all
columns are required, unneeded columns do not need to be read, as opposed to a
row-wise layout which requires reading the whole row3. (2) Columns contain data
of similar shape (similar type, but can also have similar ranges) and, thus, benefit
compression, but also enable efficient bulk operations (via SIMD).

Data Modifications. Since data is typically stored columnar and compressed,
modifying it is rather slow (e.g. might require re-compression of larger chunks). Of-
ten, systems optimized store newly modified data out-of-place which is, then, period-
ically integrated into the compressed main storage. Options for out-of-place storage
of modifications include e.g. a specialized write store, as used by C-Store [SAB+05],
or delta structures, like the Positional Delta Tree [HZN+10] in case of Vectorwise.

Query Execution. The larger the amount of data analyzed, the more impor-
tant the efficiency of evaluating queries becomes. Analytical systems tend to focus
on query execution paradigms that are as efficient as possible. Query execution
paradigms are discussed in the following section (Section 2.2.4).

2.3.3 Conclusion

Database Management Systems (DBMSs) have become the de facto standard of
storing, modifying and analyzing data. Especially, Relational DBMSs are widely
popular.

Performance, often, depends on the workload. For analytical workloads, which
have specific characteristics (read-intensive and complex queries, bulk updates),
specialized systems emerged. These specialized systems often outperform generic
systems by a significant margin. By being optimized for analytical workloads, these
systems differ from generic systems in the way they store data, handle updates and
execute queries.

Note that there also exist rather generic systems that perform well on analytical
workloads. Most notable examples are Hyper [Neu11] and Umbra [NF20].

3Attributes of rows could be skipped, but this would introduce many small skips, which does not
interact well with prefetching (be it hardware prefetcher(s) or fetching blocks from disk. Another
major point is that typically a whole block has to be read from storage. Thus, such small skips
are unlikely to reduce data read from storage.

31

2.4. QUERY EXECUTION PARADIGMS

Table 2.2: Summary of basic query execution paradigms.

Name Execution Materialization Interpretation Overhead
Iterator tuple-at-a-time 1 row high
Data-Centric Compilation tuple-at-a-time ≤ 1 row none
Columnar Execution column-at-a-time full column minimal
Vectorized Execution vector-at-a-time column chunk low

2.4 Query Execution Paradigms

In this section, we explain basic query execution tactics commonly used in RDBMSs.
A brief overview can be found in Table 2.2. We first explain the simple iterator-
based execution model, followed by data-centric compilation, columnar execution
and vectorized execution.

2.4.1 Iterator-based Execution

Query evaluation can be implemented using iterators, which is e.g. described by
Graefe [Gra94]. Each operator implements a open-next-close interface which re-
sembles an iterator, the same for expressions. To evaluate the operator tree, next

is called on the top-most operator (the root). Depending on the implementation of
each operator, it may call next of its children to evaluate the corresponding subtree.

Materialization Overhead. Typically, next only returns one row (later, we show
that more rows can be returned as well). Thus, only one row need to be materialized
in the pipeline at a time (per operator). Consequently, the memory footprint of
iterators is rather low (compared to Columnar and Vectorized Execution).

Interpretation Overhead. Typically, each next call either involves calling a
virtual method (e.g. in C++; comes with two indirect memory accesses) or calling
a function pointer (e.g. in C; involves one indirect memory access) and potentially
also requires loading machine code into instruction cache (e.g. L1d). For evaluating
expressions, this typically requires at least one call to a virtual method/function
pointer per expression. Thus, interpretation overhead is high.

Notable Systems. Iterator-based Execution is used by well-established systems
such as Postgres [SR86], MySQL [BZN05] and SQLServer [LCH+11].

2.4.2 Data-Centric Compilation

Data-Centric Compilation [Neu11] is based on the idea to compile a query fragment
(a pipeline, starting from a source until results are materialized in a sink) into

32

2.4. QUERY EXECUTION PARADIGMS

a single loop. Inside that loop, one row is processed at a time. The row’s values
(attributes) are stored inside regular variables. Expressions then become expressions
on these values. This is the first step, followed by machine code generation. The
idea is that after the compilation step, each variable will fit a CPU register and
expressions become native CPU instructions.

Materialization Overhead. Since attributes fit CPU registers, the intra-pipeline
materialization overhead is minimal. However, attributes can be spilled to slower
memories (done by the compiler as part of register allocation, typically happens
when more variables are used than there are available registers).

Interpretation Overhead. Since the whole pipeline is compiled into machine
code, the interpretation overhead is non-existent.

Notable Systems. Data-Centric Compilation is mainly used in Hyper [Neu11]
and Umbra [NF20].

2.4.3 Columnar Execution

A different approach is Columnar Execution, which executes the query column-at-a-
time. In other words, expressions are computed by fully reading the input columns
and fully producing the output column(s). This offers essentially two advantages:
(1) Interpretation can happen per operation, which now processes whole columns.
Therefore, interpretation overhead is low. (2) Processing can happen in tight, often
data-independent, loops, which is not only CPU-efficient (can use SIMD, CPUs can
speculate ahead and fill processing pipeline with load, stores and other operations)
but also allows efficiently loading/storing data from/to main memory (data parallel
access).

Materialization Overhead. The obvious disadvantage is that the full columns
need to be materialized, for each expression. Consequently, the memory footprint
can be high and, if data does not fit into main memory anymore, trigger spooling
to disk.

Interpretation Overhead. Since interpretation only needs to be done once per
expression, interpretation overhead is very low (assuming corresponding tables have
many rows).

Notable Systems. The most notable example for Columnar Execution is Mon-
etDB [Bon02, IGN+12].

33

2.4. QUERY EXECUTION PARADIGMS

2.4.4 Vectorized Execution

While columnar execution has its advantages, materialization overhead is high.
Vectorized Execution [BZN05] introduces limited materialization into Columnar
Execution. Instead of evaluating the full table (or full columns thereof), Vectorized
Execution partitions the table into chunks. Each chunk consists of columnar vec-
tors. Inside that chunk, Evaluation can then be done “column-at-a-time”, or rather
“column-vector-at-a-time”.

Moreover, Vectorized Execution provides some additional benefits. Additional opti-
mizations can be triggered via micro-adaptivity [RBZ13], which dynamically choose
alternative execution tactics (per expression), or by cheap checks once per vector.

Materialization Overhead. Compared to Columnar Execution, materialization
overhead is typically lower, but obviously higher than Data-Centric Compilation as
columnar vectors need to be materialized.

Interpretation Overhead. Interpretation Overhead is higher than for Colum-
nar Execution, as expression evaluation needs to call a function pointer/virtual
method for each chunk. Typically, chunk sizes are in the 1-2k rows, rendering the
interpretation overhead rather insignificant.

Notable Systems. Notable systems that utilize Vectorized Execution are Vec-
tor/Vectorwise [BZN05], DB2 BLU [RAB+13], Photon [RBŁ21] and DuckDB [dud].

2.4.5 Relative Performance

Iterator vs. Vectorized. The initial paper on Vectorized Execution [BZN05]
highlighted that Vectorized Execution outperforms Iterator-based Execution by “be-
tween one and two orders of magnitude” [BZN05].

Data-Centric vs. Vectorized. There has been a study on the relative perfor-
mance between Data-Centric Compilation and Vectorized Execution, by Kersten et
al.[KLK+18]). The study established that:

1. Data-Centric Compilation provides better performance at computationally
intensive workloads.

2. Vectorized Execution excels at data-parallel workloads.
3. Vectorized Execution features low compilation time (pre-compiled primitives),

accurate profiling and adaptivity.

34

2.5. DOMAIN-SPECIFIC LANGUAGES

4. Data-Centric Compilation shines at stored procedures and language integra-
tion, as these can be compiled into functions.

In Chapter 7, we show that point 2 depends on the actual hardware setup. Thus,
slightly weakening the findings by Kersten et al. In practice, the hardware setup
is not always controllable. As a consequence, neither of the two paradigms can be
optimal (given the uncontrollable setup).

2.4.6 Conclusion

There are multiple options to evaluate queries. We described Iterator, Data-Centric
Compilation, Columnar Execution, Vectorized Execution. Each has their advan-
tages and disadvantages in interpretation, materialization overhead as well as other
performance characteristics that depending on the hardware “at hand”. Thus, if
one specific paradigm has to be chosen:

“There are no solutions. There are only trade-offs.” (Thomas Sowell)

2.5 Domain-Specific Languages

Since there are many possible languages to encode programs, we focus on languages
tailored to analytical queries, which are: Plans, Comprehensions, Vector Models
and Low-Level Imperative languages. Figure 2-1 classifies the most common works.

2.5.1 Plans

Plans are frequently used in data management systems. Most commonly, they either
describe logical or physical plans in relational algebra. Recent works, using the
concept of low-level plan operators (LOLEPOPs) [HCL+90, Loh88], break queries
and operators into primitive operations and are conceptually very similar to VOILA,
which we propose in Chapter 5. In a query engine, LOLEPOPs might not be so
low-level (e.g. describe a hash join via FindMatch and GatherPayload), or require a
more complex environment to function (program instead of directed acyclic graph).
More high-level LOLEPOPs tend to lead to higher (re-)implementation effort, as
the operator needs to be implemented for every flavor. Very low-level LOLEPOPs
would be similar to VOILA which requires state management/update. This also
holds for LOLEPOP-based representations such as Hawk [BKF+18].

35

2.5. DOMAIN-SPECIFIC LANGUAGES

Common
Represen-

tations

Impera-
tive

Low-Level
Assembly [CAB+81]

LLVM IR
[LA04, Neu11]

Umbra IR
[KLN21]

Medium-Level MLIR [LAB+20]

High-Level SQLite [SQL20]

Vector
Model
[Ble90]

MIL [BK99]

Voodoo
[PMZM16]

Compre-
hension

Monad [Gru04] Weld [PTS+17]

Monoid [FM95] MRQL [Feg16]

Plan
LOLEPOP

[HCL+90, Loh88] DB2 BLU
[RAB+13]

Hawk [BKF+18]

High-Level
Plan [Gra93]

Figure 2-1: Classification of domain-specific languages for analytical queries. Spe-
cific examples are marked in gray. Admittedly, the separation of imperative lan-
guages into high-, medium- and low-level is almost arbitrary because the borders
are not clearly definable and comparison is relative to the choice of examples.

2.5.2 Comprehensions

Comprehensions describe enumerations as the composition of scalar operations.
Well-known classes are Monad [Gru04] (e.g. Weld [PTS+17]) and Monoid [Feg16]
comprehensions. In general, comprehensions heavily rely on scalar operations and,
therefore, lose information about data-parallelism, e.g. branches are introduced.
This requires re-discovery of data-parallelism, when e.g. SIMD or GPUs are sup-
posed to be used. Like many high-level languages, Weld [PTS+17] allows the cre-
ation of temporary collections (arrays, lists, etc.) and, therefore, requires deforesta-
tion [Wad88] to eliminate unnecessary intermediate data structures. Deforestation
is a very hard optimization problem and not fully solvable in a reasonable time.
VOILA avoids creating such intermediates through a more complex program.

36

2.5. DOMAIN-SPECIFIC LANGUAGES

2.5.3 Vector Models

Vector Models describe queries as the application of certain primitive functions onto
vectors of data. Notable examples are MIL and VOODOO. MIL [BK99] (or now
MAL) has been the foundation of query execution in MonetDB [IGN+12]. It de-
fines operations in a column-at-a-time fashion. However, non-trivial plan operators,
such as hash join or hash group-by, commonly translate to complex primitive ex-
pressions in MIL. For example, a join in MonetDB translates into multiple binary
JOIN primitives. For design space exploration, this would require re-implementing
many different joins. Instead, VOILA decomposes complex operators into sequences
of statements and expressions, e.g. a hash join will end up as a sequence of hash
table lookup, hash table insert, gather, etc. VOODOO [PMZM16] has no nota-
tion of hash tables (hash join, hash group-by) and “deliberately omits control-
statements’ [PMZM16], instead VOILA embraces both.

2.5.4 Low-level Imperative Languages

Low-level Imperative Languages typically break complex operations (e.g. hash join)
into smaller very specific instructions. To allow fast execution (of generated) pro-
grams, their instructions tend to be close to the actual hardware. Due to their
performance, low-level languages are frequently used as compilation targets. Most
notably, SystemR [CAB+81] generates/generated assembly code, as well as Hy-
Per [Neu11] and Umbra [KLN21] which both generate LLVM IR [LA04]. Umbra,
however, also allows a “Flying Start” [KLN21, GBE+23] by directly emitting assem-
bly. Compared to LLVM IR [LA04], VOILA is much less low-level. For instance,
VOILA supports multiple execution strategies (tuple-at-a-time, vector-at-a-time).
LLVM’s auto-vectorization could come somewhat “close”. However, not all algo-
rithms are vectorizable, e.g. a selection might introduce a branch and, hence, break
possible auto-vectorization for the whole operator/pipeline. Similar low-level lan-
guages to LLVM IR are assembly or C. But, these also require re-discovering data-
parallelism via auto-vectorization.

2.5.5 Conclusion

We presented an overview of languages able to abstract the physical implementation
of queries. There are, however, a few trade-offs. We focus on a brief general
discussion.

Abstraction. High-level languages are typically good at abstracting many spe-
cific details and, thus, tend to provide more freedom over how a program is ex-

37

2.5. DOMAIN-SPECIFIC LANGUAGES

ecuted. This can allow many (high-level) optimizations (e.g. the combination of
two functions can be simplified into a compound function, for which a specific CPU
instruction exists).

Deforestation. Higher-level languages typically bring complex data structures
with them (e.g. lists, or lists of lists). Often, they represent intermediates (e.g. re-
sult of a function). To achieve high performance, these intermediate data structures
should be avoided, whenever possible. Complex intermediates can be removed auto-
matically (Deforestation [Wad88]). However, since it is computationally expensive
(exponential time complexity [FW88]), in practice, intermediates cannot always be
removed. In such cases, performance tends to suffer (e.g. such intermediates might
require costly sequential pointer chasing).

Low-Level Languages, typically, encode how a program is executed. Thus, the
use of specific data structures is left to the program author. High-level optimizations
are typically not possible without code changes.

Essentially, we would wish for one language expressive enough to support all queries,
and allow all optimizations/transformations on all levels (high-level, low-level and
everything in between). Unfortunately, it is unclear whether such a language exists.
If it does, it would probably be rather domain-specific.

38

CHAPTER 3

Compact Types & In-Register Aggregation

3.1 Introduction

To explore the design space for instance-based optimizations, it appeared reasonable
to start with a simple query and minimize the overall runtime for that specific query
for a given (set of) hardware. Here, we try to answer the question:

How would a human implement the fastest version of TPC-H Q1, knowing data
distributions?.

3.2 Compact Data Types

The database schema typically influences the data representation chosen for query
execution. For example, in Q1 (Listing 3.1), we notice that column l_tax is of
SQL type decimal(15,2). The more efficient, and often used, way of implementing
decimal(x,y) types in SQL is to represent them as integers x.10y, where the system
remembers y for each decimal expression. As such, we can deduce that l_tax will
fit into a 64-bit integer (log2(1015) < 64).

39

3.2. COMPACT DATA TYPES

Listing 3.1: TPC-H Query 1 (with DELTA=90)
SELECT

l_returnflag ,
l_linestatus ,
SUM(l_quantity),
SUM(l_extendedprice),
SUM(l_extendedprice * (1 - l_discount)),
SUM(l_extendedprice * (1 - l_discount) *

(1 + l_tax)),
AVG(l_quantity),
AVG(l_extendedprice),
AVG(l_discount),
COUNT (*)

FROM
lineitem

WHERE
l_shipdate <= date ’1998 -09 -02 ’

GROUP BY
l_returnflag , l_linestatus

ORDER BY
l_returnflag , l_linestatus ;

In terms of real data population, though, the actual value domains are much more
restricted:

• l_tax only contains values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8), which rep-
resented as integers (value range [0, 80]) fit a single byte. Similarly, l_discount

only contains values 0.0 and 0.09, so the integer range is even more restricted:
[0, 9].

• l_returnflag and l_linestatus contain single-character strings that range
respectively between ’A’-’R’ and ’F’-’O’ (in Unicode, the code ranges are
[65, 82] and [70, 79]). It is possible to represent both as bytes.

• l_extendedprice varies between [901.00, 104949.50], thus its integer domain
[90100, 10494950] fits a 32-bit integer (it actually needs 24 bits).

• the expression (1+l_tax) produces values in the domain 1.0, 1.8], which in the
integer representation of decimal(15,2) becomes [100, 180]. This still fits a
single unsigned byte.

• (1-l_discount)*(1+l_tax) produces values in the domain [0.91, 1.8], which in
the integer representation of decimal(15,2) becomes [91, 180]. This still fits a
single unsigned byte. Arguably, to guarantee no loss of precision and exact
answers, in a multiplication the return type could be decimal(30,4)1, which
would lead to [9100, 18000], which still fits a two-byte short.

• following the latter, l_extendedprice*(1-l_discount) produces integer values
in the domain [8199100, 1049495000], fitting a 32-bit integer.

1Please note that this is not specified by the SQL standard. An alternate policy could be to
deliver the maximum precision of both * operands, i.e. decimal(15,2) again, or decimal(30,2).

40

3.2. COMPACT DATA TYPES

• l_extendedprice*(1-l_discount)*(1-l_tax) produces integer values in the do-
main [819910000,188909100000], for which a 64-bit integer must be used.

We can see that the two additions and subtractions in Q1 can be done using
single-byte logic. The three different multiplications (that remain after common-
subexpression elimination) should be done with 16-bit, 32-bit and 64-bit precision,
respectively. The often-followed policy of using the implementation type implied
by the SQL type (i.e. 64-bit integer due to decimal(15,2)) wastes SIMD effort. We
can calculate this as doing two (add/sub) plus three (mult) hence 5 operations on
64-bit = 320 bits, whereas doing two on 8-bit, one on 16-bit, one on 32-bit and one
64-bits leads to 128-bit (3x less “SIMD-work”).

With that in mind, a natural question is: how can the query compiler know about
these column domains? Obviously, there are statistics that analytical database sys-
tems already keep, for instance ZoneMaps (also called MinMax) indexes specifically
provide this information, not only for whole table columns, but also for specific
stretches.

A more critical variant of the question is how a system can guarantee tight [Min,Max]
bounds if the system can be updated. A single (inserted) large value could hence
force all computation onto the widest possible integer type, which seems a serious
performance vulnerability given that real data (unlike TPC-H) is noisy.

This chapter does not aim to provide a definite answer to that question, rather
aims to instill research towards achieving systems that both keep most of their
data tightly represented, yet can handle updates. We do observe that columnar
compressed systems typically handle updates out-of-place, in C-store this is called
Read-Store and Write-Store [SAB+05]. VectorWise similarly performs updates in a
differential structure called Positional Delta Tree (PDT [HZN+10]). HyPer stores
its DataBlocks [LMF+16] for cold data in compressed form, whereas hot data is
stored uncompressed. Until now, these systems move data periodically towards the
compressed format based on data hot-ness. However, it is envisionable to do this
not solely based on data temperature, but to also let data distributions play a role.
That is, one could let outliers stick around in the Write-Store longer, or move them
to an uncompressed block (HyPer terminology) such as not to disrupt the tight
[Min,Max] ranges that can be kept on the compressed Read-Store.

One can alternatively see execution on compact data types as a case of “com-
pressed execution” [AMF06]. The compression schemes of VectorWise use “patch-
ing” [ZHNB06], which means that the compression scheme stores outliers in a sepa-

41

3.2. COMPACT DATA TYPES

rate location, and they are decompressed in a separate “patching phase”. One could
envision systems where execution on a range of tuples is split up in disjunct subsets
of tuples that within each subset have a homogeneous (compressed) representation
– which is very similar to patching. This way, one can JIT-generate specific code
for each such specific subset.

Guarding against Overflow in Aggregates. Finally, we turn our attention to
the task of calculating the count() and sum() aggregates (avg() is a combination of
these two), specifically focusing on the problem of overflow in sum(). A database
query processor is required to produce correct answers. It might occur that due
to enormous data sizes (very many, large values) a sum() result can no longer be
represented by the system. Rather than giving a wrong answer in such a case, the
system should give a runtime error: it should check for numeric overflow.

Checking for overflow is an unsexy database engine topic that has received scant
attention in literature. Many database systems are implemented in C or C++ and
these programming languages do not expose the overflow flags that modern CPUs
have for their scalar instructions. This means that overflow-checking involves rather
convoluted extra if-then-else tests, where the if-branch must perform various com-
parisons. This represents extra work that needs to be executed for every addition
in the sum(). Given the simple work a sum() performs, this can impose significant
overhead.

Interestingly, the use of the LLVM environment by HyPer gives that system access
to CPU overflow flags, as these are exposed by LLVM. This significantly reduces
the checking overhead, but there still is a necessity to perform an if-then based on
the overflow flag, as an error needs to be raised in case of overflow. An optimized
method of guarding for overflow is to continue execution but just OR the overflow
flag results of all operations together. Only at the end of the query (or morsel) an
error is raised if the flag got set. This further reduces overhead, but due to the OR
work some overhead still remains.

In the previous sections, we discussed how SIMD-friendly systems might be very
aware of the domains of the columns involved in (sum) expressions, to choose
compact representations for them. Such systems could often move from overflow-
checking to overflow prevention. In fact, for the simple additions, subtractions,
and multiplications we discussed before, the knowledge about the domains not only
allowed us to choose compact data types, it also allows skipping overflow check-
ing altogether (as we know it cannot occur). Please note that SIMD instruction

42

3.2. COMPACT DATA TYPES

sets, unlike scalar CPU instruction sets, do not provide support for overflow flags,
generically, so overflow prevention is crucial for SIMD.

However, for (sum) aggregates, we cannot so easily avoid overflow checking. If we
knew a limit on the amount of tuples that will be aggregated, we could obtain
bounds on the outcome of the aggregate function by multiplying this limit with the
Max and Min (if negative) statistic on the aggregated expression. Often, a query
pipeline can derive a particular limit on the amount of tuples that pass through
it. For instance, in HyPer, execution is morsel-driven, so the outer-loop will only
be taken as many times as the morsel size. Furthermore, the full table (partition)
size is also such a bound, however in case of joins and its worst case of Cartesian
product, multiple such bounds would need to be multiplied to get a reliable limit.

Alternatively, the system might impose a maximum-tuple-bound at a particular
extreme value that will never occur in practice (e.g. one US trillion or 240 tuples
passing through a single thread – it would take hours and the system could, in fact,
raise a runtime error if it would pass in reality). If we take that approach to Q1,
we can see that under the logic of bounding the max-tuples-per-thread to 240:

• sum(l_discount), sum(l_quantity), sum(l_extendedprice) will fit a 64-bit in-
teger.

• sum(l_extendedprice*(1-l_discount)*(1+l_tax)), and
sum(l_extendedprice*(1-l_discount)) will need a 128-bit integer.

Of course, if the decimal type of the summed expression has a lot of precision and
the actual values stem from a wide range, then 128-bit integers might still not
be enough in terms of this limit. Even though systems often do not support any
decimal larger than what fits in a 128-bit integer, queries with these characteristics
should not simply fail because, in practice often, the result will fit (after all, we are
computing a worst-case bound). For those cases, a system trying to apply overflow
prevention in aggregates does need to have a back-up solution that in fact performs
the (slower) overflow checking, using CPU overflow flags or comparisons. One can
argue whether operating on 128-bit integers is efficient, anyway. These data types
are supported by C/C++ compilers (__int128_t). However, modern CPUs do not
support them natively, so every simple calculation must be mapped to multiple 64-
bit calculations that are combined. Moreover, there is no SIMD support for such
128-bit calculations at all.

In all, systems that support overflow prevention as an optimization for aggregate
calculations are still faced with significant cost for these primitives. This is one of

43

3.3. IN-REGISTER (GROUP-BY &) AGGREGATION

Figure 3-1: In-register aggregation with one column (col), index into aggregate
table (group_id) and selection vector (sel)

the reasons that HyPer could claim such a performance advantage over VectorWise
in Q1 in [Neu11]. The “in-register” aggregation that we will introduce in the sequel
reduces memory access (by aggregating in a register instead) but has as additional
advantage that overflow prevention can be applied much more aggressively. In fact,
it allows doing almost all sum() calculation on the 64-bit granularity which, in turn,
is SIMD-friendly.

3.3 In-Register (Group-By &) Aggregation

In the context of Q1, with few columns, the simple implementation with a thread-
private aggregate table is used. As described earlier, finding the aggregate slot
(computing the group-ID) can be done very fast using the perfect identity hash
optimization (otherwise, a hash-table could be used). When SIMD-izing such ag-
gregation, special care is needed to avoid anomalies like lost updates in the aggre-
gation table. This could happen because when multiple aggregates are updated
within a SIMD register, it is not guaranteed that these (partial) aggregates belong
to different groups. Thus, a naive scatter to the aggregation table might lead to
lost updates. This issue can be addressed in multiple ways: (1) the system might
prevent conflicts, (2) conflicts are detected and resolved (in register) before the ag-
gregation table is updated, or (3) the layout of the aggregation table is modified in
a way to allow for conflict-free updates.

44

3.3. IN-REGISTER (GROUP-BY &) AGGREGATION

Contrary to array-based aggregation, we propose in-register aggregation which pre-
vents conflicts, and reduces the amount of load/stores (scatter/gathers). It is based
on the idea that it is favorable to virtually reorder all active vectors, via modifica-
tion of the selection vector, such that all tuples belonging to the same group appear
consecutively. Afterward, the (virtual) order can be exploited to aggregate more
efficiently.

Figure 3-1 depicts an example. The algorithm consists of two phases: First, a –
partial shuffle – is performed, which uses the group_ids and the selection vector to
build a new permutation of the selection vector in which all the groups are clustered.

The algorithm consists of two steps: First, we store the per-group consecutive
positions. We use two arrays. The first array maps the group-ID to a position
in the second array (indirection to minimize the active working set). The second
array stores the consecutive positions in slots. Whenever a new group appears,
we allocate vector-size many slots in the second array (edge case: all tuples in a
stride belong to one group). Note that this allocation of slots can fail in case of too
many groups. Afterward, we build the new selection vector by iterating over the
groups and copying the positions. In addition, this step also computes the group
boundaries (lim) and memorizes in which order the groups appear (grp) which will
be needed in the next phase.

Using a lot of care, we were able to create an initial fast scalar version of this
shuffle that operates at just 6 cycles/tuple on Sandy Bridge. It works similar to the
simplified code in Listing 3.2.

Additionally, it is possible to SIMD-ize partial shuffle using AVX-512. In our im-
plementation we exploit the conflict detection instruction (vpconflictd) which, in
the 32-bit version, takes a 16 (32-bit) integers as its input and produces 16 (32-bit)
masks. For one element i it checks whether the elements from 0th to (i − 1)th (pre-
vious elements in the SIMD lane) are equal to the element i. If this is the case for
an element k, then the k-th bit of mask i will be 1; otherwise it will be 0. If done on
the SIMD register full of group-IDs, it is possible to determine how many tuples end
up in the same group before a given tuple (number of 1 bits in mask, i.e. population
count 2). Together with a per-group offset, this produces unique indexes, which are
used to scatter out the positions from the selection vector. The per-group offset is
the current location where new positions into a group will be written, and is essen-

2Sadly, in AVX-512 there is no instruction that calculates the population count in parallel.
Hence, we implemented a fast population count using an in-register lookup table with 32-bit
granularity, which in our specific case leads to 4 lookups done via vpermd.

45

3.3. IN-REGISTER (GROUP-BY &) AGGREGATION

Listing 3.2: Partial Shuffle in simplified version without low-level performance im-
provements. It produces the inputs for the subsequent ordered/in-register aggre-
gation (lim, grp and sel) by virtually reordering the rows such that groups are
clustered together.
int partial_shuffle (int* lim , u64* grp , int* sel , u64* group_ids ,

int* in_sel , int in_num , u16* grppos , u16* selbuf) {
u16* buf_ins =& selbuf [0];
u16* buf_end = & selbuf [GROUP_BUF_SIZE];
u16 buf[MAX_ACTIVE_GROUPS];
u16* max_gid = &buf [0];

// 1. pre - group
if (sel) {

for (int i=0; i< in_num ; i++) {
int k = in_sel [i];

auto gid = group_ids [k];
auto dstpos = & grppos [gid];
if (!(* dstpos)) {

// allocate new group (rather unlikely)
if (buf_ins >= buf_end) {

// too many groups (very unlikely)
return -1;

}
* dstpos = buf_ins ;
buf_ins += MAX_VSIZE ;
* max_gid = gid;
max_gid ++;

}
** dstpos = k;
(* dstpos)++;

}
} else {

// similar , with ’k’ = ’i’
}

// 2. build output
int num_groups = 0;
int num_tuples = 0;

for (auto curr=buf; curr < max_gid ; curr ++) {
auto gid = *curr;

// copy ordered groups
auto pos = grppos [gid];
auto num = (pos - selbuf) % MAX_VSIZE ; /* Optimized into bit -wise op */
auto start = pos - num;
for (int i=0; i<num; i++) {

sel[i] = start [i];
}
grppos [gid] = NULL;
sel += num;
num_tuples += num;

// update resulting group boundaries
lim[num_groups] = num_tuples ;
grp[num_groups] = gid;
num_groups ++;

}

return num_groups ;
}

46

3.3. IN-REGISTER (GROUP-BY &) AGGREGATION

Listing 3.3: Ordered Aggregation: When number of distinct groups is low and data
is clustered on the group ids, we can save memory accesses by first accumulating
partial aggregates in registers and, eventually, write them back into the table. How-
ever, this requires to compute the group boundaries (group_ids, lim and num_groups)
first, which can be done once for multiple aggregates (with the same keys)
void ordaggr_sum (i128 * aggr_col , u64* group_ids , int* lim , i32* values ,

int num_groups) {
int k = 0;
for (int g=0; g< num_groups ; g++) {

// locally pre - aggregate in register
i64 sum = 0; // pre - aggregate typically fits into smaller type
for (; k<lim[g]; k++) {

sum += values [k];
}
aggr_col [group_ids [g]] += sum; // update table

} }

tially an array of 16-bit indexes indexed by the group-ID. Afterward, the per-group
offsets have to be updated by scattering the (unique) indexes back. Note that in
case of conflicts, the highest SIMD lane [Int16] wins, which – here – is the highest
index. After the previous steps have been done for the whole selection vector, the
new selection vector will be built. This, per-group, copies the stored positions into
the resulting selection vector. On Knights Landing our SIMD-ized partial shuffle
was able to operate at 9 cycles/tuple whereas the initial scalar version runs at 13
cycles/tuple.

The second phase calculates the aggregates using ordered aggregation (Listing 3.3).
This aggregation algorithm exploits the fact that groups now appear in order.
Hence, it just aggregates the column values until the group boundary is detected,
then it updates the final aggregates in the table using the partial aggregate. The
depicted partial aggregates array does not exist because the ordered aggregation di-
rectly updates the aggregate in the aggregate table. Note that ordered aggregation
can relatively easily be implemented using SIMD.

This method avoids read/write conflicts which would otherwise occur on a per-tuple
basis. Further, the type of the partial aggregate can be restricted because we know
that the partial sum is computed maximally for the whole vector. The vector-size,
say 1024, is a much tighter bound than 240. This means all partial aggregates in
Q1 fit in a 64-bit register. In case of Q1, this removes almost all expensive 128-bit
arithmetic from the hot-path. The 128-bit additions still have to be done, but only
once per group, per vector.

We finally note that “in-register” aggregation is an adaptive way of handling aggre-
gates. The partial shuffle is very fast, but can fail, if there are too many distinct

47

3.4. EVALUATION

2 3 4 5 6 7 8 9 10

1,000

2,000

3,000

Number of aggregates

T
im

e
in

m
ill

ise
co

nd
s

Standard, 4 groups Standard, 8 groups Standard, 16 groups
In-register, 4 groups In-register, 8 groups In-register, 16 groups

Figure 3-2: Standard vs. in-register aggregation, 128 bit aggregates

group values in the vector (more than 64). In that case, normal vectorized aggrega-
tion primitives are used, and we use exponential back-off to re-try with in-register
aggregation much later. Such micro-adaptive behavior is easy to integrate in vec-
torized query processors [RBZ13].

3.4 Evaluation

For most experiments we used a dual socket machine with two Intel Xeon E5-2650
v2 (Sandy Bridge) and 256 GiB main memory running Fedora 24 with Linux kernel
version 4.7.9 and GCC 6.3.1. To reduce interference with NUMA effects, the test
process was bound to processor 0 (on NUMA node 0) whereas all memory allocations
were bound to NUMA node 0.

3.4.1 Standard vs. In-Register Aggregation

To find out in which situations the in-register aggregation excels, we compare it
against the standard array-based aggregation on the – above-mentioned – Sandy
Bridge machine. The setup of the experiment is as follows: We used a vectorized
execution pipeline. For each column, we load a number of vectors and then aggregate
each column into a sum of each column’s values for each group. Each vector consists
of up to 1024 values and the size of the input is 108 tuples. We generate a uniformly
distributed group-ID (key) column. These group-IDs are spread across the aggregate
table in row-wise layout with a spreading factor of 1024. All columns including the
group-ID are 64-bit integers. The aggregates are 128-bit integers, and it is assumed
that partial aggregates fit into 64-bit integers.

Figure 3-2 compares standard aggregation with in-register aggregation in the block-
at-a-time processing model, i.e. for n aggregates n aggregation primitives have to
be called. It can be seen that for a low number of aggregates both aggregation

48

3.4. EVALUATION

2 3 4 5 6 7 8 9 10

500

1,000

1,500

2,000

Number of aggregates

T
im

e
in

m
ill

ise
co

nd
s

Fused standard, 8 groups Fused standard, 16 groups
In-register, 8 groups In-register, 16 groups

Fused in-register, 8 groups Fused in-register, 16 groups

Figure 3-3: Fused Standard vs. in-register aggregation, 128-bit aggregates

strategies perform almost equal while with increasing number of aggregates in the
query, the standard aggregation shows a worse performance mainly due to (1) with
more aggregates the cost of the partial shuffle is better amortized (2) Standard
aggregation touching the same cache lines containing the aggregates in the aggregate
table many times and (3) load/store conflicts when only a few entries (groups) in
the aggregate table are thrashed.

Problem (2) can be mitigated by fusing the aggregation primitives together through
merging them into one loop that updates multiple aggregates (essentially “Loop
Fusion”, note that this typically requires JIT compilation, see [SZB11], as the com-
bination of aggregates is only known at query time). In Figure 3-3, the fused stan-
dard aggregation is compared to the fused and non-fused in-register aggregation.
In our case, Loop Fusion improves the standard aggregation’s performance in com-
parison to in-register aggregation but problems (1) and (3) (in case of few distinct
group values) still hold, which is the reason in-register aggregation out-performs the
standard aggregation for more than 6 (8 groups) resp. 8 (16 groups) aggregates.
Interestingly, fusing the in-register ordered aggregation primitives provides hardly
any benefit (≤ 6 aggregates) and can even be detrimental (> 6 aggregates).

3.4.2 Q1 Flavors

Based on the promising results of Section 3.4.1 we implemented multiple versions of
Q1 to compare their response times, single-threaded. Starting from 3 base imple-
mentations, we derived different flavors: A vectorized X100-alike implementation
which processes a block-at-a-time and prevents overflows, a HyPer-alike which pro-
cesses a tuple-at-a-time and checks for overflows and a handwritten AVX-512 version
which processes a block of 16 tuples at a time and prevents overflow. Flavors in-
clude different methods for overflow detection and prevention, different aggregation
techniques, varying aggregate table layout, as well as, different data representations.

49

3.4. EVALUATION

p

Table
3.1:

Q
1

Flavors
Flavor

nam
e

X
100

H
yPer

D
ata

types
O

verflow
Layout

A
ggregation

C
om

m
ents

X
100

FullN
SM

Standard
✓

-
Full

Prevent
N

SM
Standard

X
100

FullD
SM

Standard
✓

-
Full

Prevent
D

SM
Standard

X
100

FullN
SM

Standard
Fused

✓
-

Full
Prevent

N
SM

Standard
&

fused
X

100
FullN

SM
In-R

eg
✓

-
Full

Prevent
N

SM
In-register

X
100

C
om

pact
N

SM
Standard

✓
-

C
om

pact
Prevent

N
SM

Standard
X

100
C

om
pact

D
SM

Standard
✓

-
C

om
pact

Prevent
D

SM
Standard

X
100

C
om

pact
N

SM
Standard

Fused
✓

-
C

om
pact

Prevent
N

SM
Standard

&
fused

X
100

C
om

pact
N

SM
In-R

eg
✓

-
C

om
pact

Prevent
N

SM
In-register

X
100

C
om

pact
N

SM
In-R

eg
AV

X
-512

✓
-

C
om

pact
Prevent

N
SM

In-register
O

ptim
ized

for
AV

X
-512

H
yPer

Full
-

✓
Full

D
etect

(flag)
N

SM
Standard

H
yPer

FullO
verflow

B
ranch

-
✓

Full
D

etect
(branch)

N
SM

Standard
H

yPer
FullN

oO
verflow

-
✓

Full
Prevent

N
SM

Standard
H

yPer
C

om
pact

-
✓

C
om

pact
D

etect
(flag)

N
SM

Standard
H

yPer
C

om
pact

O
verflow

B
ranch

-
✓

C
om

pact
D

etect
(branch)

N
SM

Standard
H

yPer
C

om
pact

N
oO

verflow
-

✓
C

om
pact

Prevent
N

SM
Standard

W
eld

-
-

Full
Prevent

N
SM

Standard
H

andw
ritten

AV
X

-512
-

-
Full

Prevent
N

SM
Standard

(SIM
D

)
handw

ritten
in

AV
X

-512
H

andw
ritten

AV
X

-512
O

nly64B
itA

ggr
-

-
Full

Prevent
N

SM
Standard

(SIM
D

)
handw

ritten
in

AV
X

-512
allaggregates

in
64-bit

arithm
etic

50

3.4. EVALUATION

X10
0 Fu

ll NSM
Sta

nd
ard

X10
0 Fu

ll DSM
Sta

nd
ard

X10
0 Fu

ll NSM
Sta

nd
ard

Fu
sed

X10
0 Fu

ll NSM
In-

Reg

X10
0 Com

pa
ct

NSM
Sta

nd
ard

X10
0 Com

pa
ct

DSM
Sta

nd
ard

X10
0 Com

pa
ct

NSM
Sta

nd
ard

Fu
sed

X10
0 Com

pa
ct

NSM
In-

Reg

HyP
er

Fu
ll

HyP
er

Fu
ll Over

flo
wBran

ch

HyP
er

Fu
ll NoO

ver
flo

w
Weld

HyP
er

Com
pa

ct

HyP
er

Com
pa

ct
Over

flo
wBran

ch

HyP
er

Com
pa

ct
NoO

ver
flo

w
0

2,000
4,000
6,000
8,000

T
im

e
in

m
ill

ise
co

nd
s

Figure 3-4: Different Q1 implementations on Sandy Bridge using scale factor 100.

We tested these flavors on two machines. One is the above-mentioned Sandy Bridge
machine. Figure 3-4 visualizes the response times each flavor achieved. Refer to
Table 3.1 for a description of each flavor. It can be seen that the vectorized approach
together with in-register aggregation, compact data types and overflow prevention
(X100 Compact NSM In-Reg) can outperform the other approaches. As visualized,
this approach also beats the HyPer-alike implementations with and without overflow
detection. Generally speaking, fusing the aggregate calculation into one primitive
improves the response time because the aggregates which are accessed concurrently
are often in the same cache-line. Further, standard aggregation can be beaten by
in-register aggregation in Q1. NSM appears to be the better choice, as aggregates
are closer together in memory as compared to DSM and compact data types tend
to speed up vectorized processing whereas, in Q1, they slow down HyPer-alike
implementations.

Additionally, we evaluated our Q1 flavors on an Intel Xeon Phi 7210 (Knights
Landing) with 110 GB of main memory running Ubuntu 16.04 LTS using Linux
Kernel 3.10.0 and GCC 5.3.1. The main memory is split into different NUMA
regions: Four regions à 24 GB represent the normal (DRAM) main memory, whereas
the other four NUMA regions represent the accessible High-Bandwidth Memory
(HBM). We limited the scale factor to 75 because scale factor 100 would exceed
the local (DRAM) main memory capacity of a single NUMA node and would have
caused interference with High Bandwidth Memory and/or cross-node NUMA traffic.

Figure 3-5 plots each flavor’s response time. In general, it shows a similar picture
as with the Sandy Bridge machine with one exception being the handwritten AVX-
512 implementation(s) which are the fastest of the flavors tested. Moreover, it can
be seen that other implementations can be optimized using AVX-512, i.e. wider

51

3.5. CONCLUSION

X10
0 Fu

ll NSM
Sta

nd
ard

X10
0 Fu

ll DSM
Sta

nd
ard

X10
0 Fu

ll NSM
Sta

nd
ard

Fu
sed

X10
0 Fu

ll NSM
In-

Reg

X10
0 Com

pa
ct

NSM
Sta

nd
ard

X10
0 Com

pa
ct

DSM
Sta

nd
ard

X10
0 Com

pa
ct

NSM
Sta

nd
ard

Fu
sed

X10
0 Com

pa
ct

NSM
In-

Reg

X10
0 Com

pa
ct

NSM
In-

Reg
AV

X-51
2

HyP
er

Fu
ll

HyP
er

Fu
ll Over

flo
wBran

ch

HyP
er

Fu
ll NoO

ver
flo

w
Weld

HyP
er

Com
pa

ct

HyP
er

Com
pa

ct
Over

flo
wBran

ch

HyP
er

Com
pa

ct
NoO

ver
flo

w

Han
dw

rit
ten

AV
X-51

2

Han
dw

rit
ten

AV
X-51

2 Only
64

BitA
gg

r
0

1

2

3
·104

T
im

e
in

m
ill

ise
co

nd
s

Figure 3-5: Different Q1 implementations on Knights Landing using scale factor 75.

SIMD and more complex operations are available as instructions. Additionally, it
can be said that the HyPer implementation performs very slowly, which is caused
by overflow detection through GCC’s builtins, whereas the implementation without
overflow detection performs better than the average.

3.5 Conclusion

In this chapter, we discussed how to minimize the overall runtime of a specific query
(TPC-H Q1) by exploiting the data distributions (range of values & upper bound
on cardinality). Therefore, we proposed two rather generic methods to improve Q1
and similar queries: Compact Data Types and In-Register Aggregation.

Compact Data Types. Fitting data types to the actual data, instead of using
the user-provided schema, can lead to significantly faster arithmetic. In our exper-
iments, this is caused by the better utilizing of SIMD registers. 4× smaller data
types (by transforming 32-bit integers to 8-bit integers) allow processing 4× number
of values, keeping the number of cycles constant and assuming appropriate SIMD
instructions exist. Not only can thinner data types lead to faster arithmetic, but
they can also significantly reduce the footprint of data structures stored in memory
(we use a more extreme variation of this idea in the following chapter). Note that
shrinking data types can be regarded as lightweight compressed execution that,
not only, brings significant benefits, but is also relatively easily added to existing
DBMSs.

In-Register Aggregation. In certain scenarios, a group-by/aggregation produces
only a relatively low number of groups (a “handful”). In such cases, a hash-based
group-by can commonly use a perfect hash function and, consequently, avoid rela-

52

3.5. CONCLUSION

tively costly hash bucket traversal and key checks. The aggregates are then com-
puted for each bucket (basically updating values in a potentially large array). For a
“handful” of groups, however, this is suboptimal as this computation (a) introduces
repeated read-write conflicts (in the underlying hardware), (b) introduces, generally
speaking, excessive memory-access (even though most accesses are relatively cheap
in a row-wise layout, thanks to caches [ZNB08]) and (c) relies on updating values
in the data type calibrated on the worst-case (i.e. updates are expensive). There-
fore, we introduce in-register aggregation, a technique that exploits the previously
known ordered aggregation to quickly aggregate values using accumulator variables
(typically stored in 1-2 CPU registers, depending on the data type). Note that the
accumulator variable can have a thinner type than the aggregate, as it only needs
to accumulate one vector full of values (typically 1k). The underlying idea is to
re-order the values such that the groups appear ordered. We described such an
algorithm that re-orders the groups cheaply, only requiring a few CPU cycles. We
have shown that this technique leads to further gains and, thus, outperforms the
naive aggregation in TPC-H Q1.

Hardware-Dependent Performance. The combination of In-Register Aggrega-
tion and Compact Data Types performed well (i.e. better than either the vectorized
and data-centric implementation) on the Sandy Bridge and Knights Landing. How-
ever, on the Knights Landing machine, handwritten AVX-512 code outperformed.
If we can further assume the 128-bit SUM aggregates fit into 64-bit, the AVX-512
implementation can be further improved (explored more deeply in the next chapter
as Optimistic Aggregates in Section 4.3.1).

Summary. The presented optimizations are useful in instances of TPC-H Q1
(and similar queries), but their performance depends on data distribution (num-
ber of groups and range of values). While initially this became the fastest single-
threaded implementation of Q1, it was eventually “dethroned” by Nowakiewicz et
al. [NBH+18], who further improved the group-by/aggregation by exploiting the ex-
istence of only 4 groups in Q1 (using 4 SIMD comparisons, one per group, instead
of the more expensive, but more generic, In-Register Aggregation).

53

3.5. CONCLUSION

54

CHAPTER 4

Compressed Hash Tables & Soviet Strings

4.1 Introduction

Given a physical execution plan, there is a plethora of different implementations
to execute the plan – the design space. One interesting dimension is the use of
compression. Typically, compression is only used for (base table) scans to elevate
the disk bottleneck (and sometimes even the memory wall [ZHNB06]). However,
more interesting is, so-called, Compressed Execution, the ability to operate on (at
least partially) compressed representations, inside the query processing pipeline.
This has, at least partially, been explored [AMF06, Łus11, RAB+13]. Still very
efficient – and practically useful – new approaches can be found, which we discuss
in this chapter:

We focus on compressing (and operating on compressed) hash tables – a frequently
used data structure for query processing – as illustrated in Figure 4-1. We discuss
Domain-Guided Prefix Suppression, which bit-packs values. Then, we explore Op-
timistic Splitting which separates parts of values, to optimize towards “hot” values.

Strings often occur in real-life data sets [VHF+18]. Whenever strings are present,
they tend to lead to storage overhead and inefficient processing (e.g. comparisons

55

4.2. DOMAIN-GUIDED PREFIX SUPPRESSION

Cold AreaHot Area
Hash Table

24 byte 8 byte 8 byte

Speculate &
Compress

Optimistically Compressed Hash Table

Figure 4-1: Optimistically Compressed Hash Table, which is split into a thin hot
area and a cold area for exceptions

have to compare all characters of a string). To alleviate these two disadvantages,
we introduce the dynamic string dictionaries (Unique Strings Self-aligned Region)
which encodes frequent strings, optimistically and on-the-fly.

4.2 Domain-Guided Prefix Suppression

Domain-Guided Prefix Suppression reduces memory consumption by eliminating
the unnecessary prefix bits of each attribute. This enables us to cheaply compress
rows without affecting the implementation of the hash table itself, which makes
it easy to integrate our technique into existing database systems. In particular,
while our system (Vectorwise) uses a single-table hash join, Domain-Guided Pre-
fix Suppression would also be applicable (and highly beneficial) for systems that
use partitioning joins [BTAÖ13, SCD16]. Domain-Guided Prefix Suppression also
allows comparisons of compressed values without requiring decompression. In the
rest of this section, we describe Domain-Guided Prefix Suppression in detail using
Figure 4-2 as an illustration.

4.2.1 Domain Derivation

in a query plan, an in-flight column can originate directly from a table scan or from
a computation. If a value originates from a table scan, we determine its domain
based on the scanned blocks. For each block, we utilize per-column minimum and
maximum information (called ZoneMaps or Min/Max indices). This information
is typically not stored inside the block itself, as this would require scanning the
block (potentially fetching it from disk) before this information can be extracted.
Instead, the meta-data is stored “out-of-band” (e.g. in a row-group header, file
footer or inside the catalog). By knowing the range of blocks that will be scanned,
the domain can be calculated by computing the total minimum/maximum over the
range.

56

4.2. DOMAIN-GUIDED PREFIX SUPPRESSION

A B
[-4, 42]
[1, 23]
[23, 90]

[3, 23]
[3, 1k]
[0, 3k]

... ...

A B A B
[-4, 42] [3, 1k] [0, 46] [0, 997] 6 10

42 3
-4 23
1 1k
23 3

A B

A B

Per-block Total Normalized #Bits

Data Normalized

46 0
0 20
5 997
27 0

Packed

X

46

27

1280
63813

Bitwise layout

Mask
InShift

OutShift

0xF...F 0xF...F
0 0
0 6

X

Preprocessing on meta data

Packing during query execution

A B A B

min/max min/max domain required

C[i] = (u << 0)

u = (A[i] >> 0)

v = (B[i] >> 0)

& 0xF...F

& 0xF...F

| (v << 6)

32-bit 64-bit 32-bit

Figure 4-2: Domain-Guided Prefix Suppression

On the other hand, if a value stems from a computation, the domain minimum
and maximum can be derived bottom up according to the functions used, based
on the minimum/maximum bounds on its inputs under assumption of the worst
case. Consider, for example, the addition of two integers a ∈ [amin, amax] and
b ∈ [bmin, bmax] resulting in r ∈ [rmin, rmax]. To calculate rmin and rmax we have
to assume the worst-case that means the smallest (rmin), respective highest (rmax),
result of the addition. In case of an addition, this boils down to rmin = amin + bmin

and rmax = amax + bmax.

Depending on these domain bounds, an addition of two 32-bit integer expressions
could still fit in a 32-bit result, or less likely, would have to be extended to 64-bit.
This analysis of minimum/maximum bounds often can allow implementations to
ignore overflow handling, as the choice of data types prevents overflow, rather than
having to check for it. For aggregation functions such as SUM, overflow avoidance is
more challenging, but in Section 4.3.1, we discuss Optimistic Splitting, which allows
doing most calculations on small data types, also reducing the cache footprint of
aggregates.

4.2.2 Prefix Suppression

Using the derived domain bounds, we can represent values compactly without losing
any information by dropping the common prefix bits. To further reduce the number

57

4.2. DOMAIN-GUIDED PREFIX SUPPRESSION

of bits and enable the compression of negative values, we first subtract the domain
minimum from each value. Consequently, each bit-packed value is a positive offset
to the domain minimum. We also pack multiple columns together such that the
packed result fits a machine word. This is done by concatenating all compressed
bit-strings, and (if necessary) chunk the result into multiple machine words. Each
chunk of the result constitutes a compressed column, which can be stored just like
a regular uncompressed column.

Figure 4-2 shows an example where column A contains values ranging from dmin =
−4 to dmax = 42. First, we transform values from that domain into non-negative
integers by subtracting the domain minimum (−4). These values can then be rep-
resented using ⌈log2(dmax − dmin + 1)⌉ = 6 bits. Afterward, we “glue” values from
multiple columns together (here: A and B) together.

4.2.3 Compression and Decompression

Like many modern column-oriented systems [ABH+13], Vectorwise is based on vec-
torized primitives that process cache-resident vectors (=arrays of single column
values). These primitives process items from multiple inputs in a data-parallel
(SIMD-friendly) fashion in a tight loop. Consequently, modern compilers automati-
cally translate such code into SIMD instructions for the specified target architecture
(e.g. AVX-512). In our vectorized hash table implementation, pack primitives com-
press and “glue” multiple inputs together to produce one intermediate result. Later,
this intermediate result is then stored inside the hash table. With all the inputs
and the one output being cache-resident vectors, the compression itself happens in-
cache. For bit-packing, our pack primitives look similar to the following pseudocode,
which packs parts of n 32-bit and 16-bit integers into 32-bit integers:
void pack2_i32_i16_to_i32 (i32* res , int n,

i32* col1 , i32 b1 , int ishl1 , int oshr1 , i32 m1 ,
i16* col2 , i16 b2 , int ishl2 , int oshr2 , i32 m2) {

for (int i=0; i<n; i++) {
// Select portion of input and cast to result ’s type
i32 c1 = ((col1[i] - b1) >> ishl1) & m1;
i32 c2 = ((col2[i] - b2) >> ishl2) & m2;
// Move to output positions
res[i] = (c1 << oshr1) | (c2 << oshr2);

} }

After bit-packing, we scatter the intermediate results into its final positions in the
hash table. For improved cache-locality, the hash table is stored in row-wise layout
(NSM) [ZNB08]. Therefore, we need to convert columnar vectors (DSM) into tuples
(NSM). An interesting observation is that in NSM two subsequent column values are

58

4.2. DOMAIN-GUIDED PREFIX SUPPRESSION

precisely one row width apart. Hence, for each attribute, we calculate an attribute
multiplier stride := row_width / attr_width which projects the row width onto the
current attribute’s width. When scattering attributes from vectors into ith NSM
record, we calculate its final position i * stride and copy each attribute to its
respective position.

When decompressing values, we fetch up to 4 columns from the hash table and
directly decompress them. For decompressing a vector of n packed 16-bit integers
from 32-bit and 16-bit integers at positions idx in the hash table, this leads to the
following pseudocode (2-column example):

void unpack2_i32_i16_to_i16 (i16* res , int n, int* idx , i16 b,
i32* col1 , int ishr1 , int oshl1 , i16 m1 , int s1 ,
i16* col2 , int ishr2 , int oshl2 , i16 m2 , int s2) {

for (int i=0; i<n; i++) {
// DSM (columnar) position -> NSM (row) position
int idx1 = idx[i] * s1;
int idx2 = idx[i] * s2;
// Extract relevant bits from NSM record
i16 c1 = (col1[idx1] >> ishr1) & m1;
i16 c2 = (col2[idx2] >> ishr2) & m2;
// Stitch back together
res[i] = (c1 << oshl1) | (c2 << oshl2) + b;

} }

Notably, compression and decompression operate in a non-intuitive fashion: Both
process m inputs and produce one output. This particular approach has two advan-
tages: (a) In contrast to approaches with multiple outputs, it allows decompressing
specific columns without enforcing decompression of neighboring cells. This allows
an efficient mix of key checks on compressed data together with key checks on
bit-packed non-integer data, most notably strings. (b) We concatenate bit-strings
directly in registers, as opposed to approaches that partially compress/decompress,
which require multiple rounds of reading/writing from/to output vectors to con-
catenate partial output vectors into the final output.

We implemented our primitives similarly to the ones shown above and improved
them further with “micro-adaptive” optimizations [RBZ13]. (1) Even though the
implementation of pack supports selective processing, it can dynamically decide to
process its inputs fully instead whenever ≥ 25% of the tuples in a batch are still
active (selected); which favors SIMD. (2) In case all base values are zero, we avoid
the integer subtraction, in case of pack, or addition, in case of unpack. This further
reduces the number of required operations if normalization is not required.

59

4.2. DOMAIN-GUIDED PREFIX SUPPRESSION

4.2.4 Operating on Compressed Keys

Domain-Guided Prefix Suppression also allows comparing compressed values them-
selves (without having to decompress). Assume the key value A is stored in the
hash table and probe key B is compared to A. Normally, one would just fetch the
key A from the table and then compare it to B. In combination with compression,
fetching A also requires decompressing A. We argue it is better to first bring B

into the same representation as A, i.e., compressing B, and then directly compare
the compressed values. This is especially true if keys A and B consist of multi-
ple columns. For instance, a group-by on two columns can often be mapped into a
single-integer compressed key, reducing the computational work of hash aggregation
(e.g. perform a single comparison, using fewer branches).

4.2.5 Generating Pre-Compiled Kernels

To integrate the on-the-fly compression, decompression, and checking routines into
Vectorwise, we needed to generate pre-compiled kernels for each type combination.
This means that we would have to generate kernels for up to n + 1 types (n inputs,
one output). For n = 8 inputs, one output and 10 distinct types, we count 108+1

kernels, leading to a heavily inflated binary file and—potentially—high lookup costs
when resolving single kernels.

To reduce the number of generated kernels, we (a) restrict the number of inputs
to ≤ 4. In addition, we (b) restrict the types we pack into to 32-, 64- and 128-bit
unsigned integers and (c) impose an order on the inputs (ordered by bit-width). All
three restrictions limit the number of kernels that need to be generated to 3,000
pack kernels and 340 kernels that do decompression such as unpack-fetch or key
checks. These kernels are generated using templating.

4.2.6 Tackling the Packing Problem

Prefix Suppression combines multiple prefix-suppressed codes from different at-
tributes. However, in the vectorized execution model, we rely on pre-compiled
primitives that only allow a fixed number of inputs (here n = 4), to avoid a com-
binatorial explosion in the number of functions needed. We must also choose the
output data types of which the hash table record is made up (32 or 64-bit integers
and rarely 128-bit integers) and appropriately spread the compressed input columns
in non-overlapping fashion over these base data types. In effect, we have to generate
a packing plan, consisting of pack functions that (a) respects the maximum n on
pack input columns, (b) minimizes the total hash table record width in row-wise

60

4.2. DOMAIN-GUIDED PREFIX SUPPRESSION

function GreedyPack(bw, C)
Q← c ∈ C ORDER BY b(c) DESC
nb ←

∑︁
c∈C

b(c) ▷ Length of compressed bit-string
U ← nb mod bw ▷ Number of unused bits
loop ▷ Each round creates one output word w

L← bw ▷ Unused bits at end of word
w ← new_word(bw)
Q′ ← ∅
while Q ̸= ∅ do ▷ Tries to fit columns into word

c← pop(Q)
if L ≥ b(c) then ▷ c fits into word w

append(w, c)
L← L− b(c)

else
push(Q′, c) ▷ Delay

Q← Q′

if Q = ∅ then return ▷ Done
if L ≤ U then ▷ Free bit budget, leave bits free

U ← U − L
else ▷ Slice first/biggest column

c← pop(Q)
(c, c′)← slice(c, L) ▷ First L bits go into c, remainder into c′

append(w, c) ▷ Split c at L bits into c and c′

push(Q, c′) ▷ Process remainder later
Q← Q ORDER BY b(c) DESC

Figure 4-3: Greedy packing algorithm with word size bw, set of columns C and b(c)
compressed size of column c ∈ C in bits

(NSM) layout as well as (c) minimizes the number of slices an input column is cut
into.

For joins, we separate the packing problem into two sub-problems, one for packing
the hash table key-columns only, and the second for packing all other columns.
For aggregates, we only pack the key-columns. The other columns are aggregate
results, and they are left in their uncompressed layout. The reason is that packing
and unpacking needed for every update to an aggregate result would slow down
aggregations dramatically. In the next section, however, we describe a technique,
called Optimistic Splitting, to shrink aggregates into smaller data types and, there-
fore, reduce the active working set, as well as CPU effort.

We pack the key-columns together, such that e.g. the TPC-H join on PARTSUPP will
pack PS_PARTKEY and PS_SUPPKEY into one word, so we can execute the join as if
there were just one column: this halves both hashing and comparison work. The
algorithm is invoked twice: once packing into 32-bit words and once packing into
64-bit words. We use the 64-bit solution if this yields less hash table columns than
the 32-bit solution, or otherwise, if the 64-bit solution produces a NSM record of
the same size.

61

4.3. OPTIMISTIC SPLITTING

Greedy Packing Algorithm. The algorithm (Figure 4-3) packs a set of columns,
and first orders them in a queue Q on their bit-width (the bits needed after Domain-
Guided Prefix Suppression). The sum of these bit-widths generally is less than a full
multiple of the output word bit-size; let the amount of unused bits be U. The main
round of the algorithm iteratively pops the largest column off Q and checks if it fits
the current output word. If not, it puts the column in the initially empty queue Q′.
Otherwise, it maps this column onto the current output word, hence reducing the
amount of still unused bits L in this output word (L is initialized to the output word
bit-width at the start of each round). When no column fits anymore and Q = ∅,
we reset Q = Q′ and Q′ = ∅ to move to a next round (output word). If at the
end L ≤ U (there is free bit budget), then we simply decrement U by L and leave
these bits free. Otherwise, the first popped column in the next round will be sliced:
putting its highest unprocessed L bits into the previous output word and starting
the round with the rest of the column. The algorithm continues its rounds until all
columns (or slices thereof) are mapped to bit ranges in the output words.

4.3 Optimistic Splitting

The goal of Optimistic Splitting is to exploit skewed access frequencies by separating
the common case from exceptional situations. We physically split the hash table
into two areas: The frequently accessed hot area and the cold area, which is accessed
rarely. This approach does not necessarily save space. However, it shrinks the ac-
tive working set, leading to lower memory access cost. Also, it converts operations
on the final, widest, data type into operations on a potentially smaller data type.
Specifically, if 128-bit operations become 64-bit or 32-bit; this can speed up com-
putation noticeably. As we show in the following, Optimistic Splitting is especially
important for data that is difficult to compress, such as aggregates and strings.

4.3.1 Optimistic Aggregates

Aggregates are difficult to compress with Domain-Guided Prefix Suppression as it is
not possible to obtain tight bounds for aggregation results (for example SUMs). The
reason is that one has to be pessimistic when deriving domain bounds to prevent
integer overflows: Assuming a SUM of at most 248 integers from, say an 18-bit domain,
would overflow 64-bit and thus need a 128-bit aggregate. If this type is used for
the aggregate, on each addition in the sum this large 128-bit integer will be read,
updated, and written back.

62

4.3. OPTIMISTIC SPLITTING

Table 4.1: Optimistic Aggregates

Aggregate Common case Exception
SUM Small integer Overflow counter
MIN Small upper bound Minimum
MAX Small lower bound Maximum
COUNT Similar to SUM
AVG Rewritten into SUM

COUNT

Using a 64-bit integer for the aggregate, on the other hand, would (a) reduce reads
and writes by a factor 2 and (b) provide faster updates. Without sacrificing cor-
rectness, Optimistic Splitting allows one to do just that in the common case (i.e.,
when no overflow occurs): The 128-bit aggregate result is split into a frequently
accessed 64-bit sum and another, rarely accessed 64-bit overflow/carry field, which
is stored separately. In pseudocode, this looks as follows:

void opsum (u64* common , u64* except , int group , i32 value) {
common [group] += value ; // 64- bit unsigned addition
// Overflow handling
bool overflow = common [group] < (u64) value ;
bool positive = value >= 0;
if (!(overflow ^ positive)) { // Rare: handle overflows

if (positive) except [group]++;
else except [group]--;

} }

Note that this is a generic implementation that handles positive as well as negative
values. In combination with domain bounds (MinMax information) it is possible
to prove the absence of negative or positive values, which leads to simplified logic
and improved performance. Our later micro-benchmarks show that this is an opti-
mization that often out-performs the full 128-bit SUM.

We can generalize Optimistic Splitting to other aggregates, as Table 4.1 illustrates..
We use the associativity of aggregates to provide a fast path for large aggregates
and a smaller working set. MIN can be implemented using an upper bound (s) inside
the hash table and storing the full minimum e as an exception (s ≥ e). When
calculating the aggregate, one would first check against s and discard values that
cannot become the new minimum. For the remaining values, one has to check
against the full minimum and potentially update the full minimum e as well as the
upper bound s. Similar is the implementation of MAX whereas the other aggregate
functions, COUNT and AVG, can be implemented similar to SUM. However, in case of
COUNT one can more aggressively reduce the common case to a 16-bit integer and
after 216 −1 iterations update both, the small optimistic counter and the exception.

63

4.4. USSR: A DYNAMIC STRING DICTIONARY

4.3.2 Other Applications

Optimistic Splitting is a very general idea that, we believe, can be applied in many
different use cases. It only requires that the entries of a hash table have different
access patterns, and can be decomposed in some form.

Besides the aggregate decomposition approach described above, a second use case
in the hash aggregation are functionally dependent group by keys. These are not
touched by lookups, and can therefore be placed in the cold area.

Optimistic Splitting is also applicable to certain hash joins. For selective joins (i.e.,
where most probes are misses), only the keys need to be stored in the hot area,
whereas the payload columns, which often occupy much more space than the keys,
can be moved to the cold area.

Even the fact that the next pointer in chaining-based hash tables is often NULL can
be exploited. A few bits in the hot area can indicate whether a next bucket is absent
or is nearby. The full next pointer can reside in the cold area.

Finally, a weakness of the usage of global MinMax information, is that outliers can
destroy the tight MinMax bounds that would capture most of the value distribution.
Alternatively, one could derive MinMax bounds from a table sample. The hot area
in hash tables would hold the “Sample-Guided” Prefix Suppressed values extended
with an exception bit. The full uncompressed columns would be present in the
exception area, but only be accessed for the outlier values.

These examples show that Optimistic Splitting is widely applicable. We also think
that some implementation techniques could be further developed. For instance, for
aggregates with few groups (and certainly global aggregates, without grouping),
vectorized systems could keep more aggressive overflow bounds that guarantee that
a batch of aggregate updates cannot overflow the partial aggregate. This way,
overflow checking could be done once per vector, rather than for every tuple. We
defer investigation of these ideas to future work.

4.4 USSR: A Dynamic String Dictionary

Strings are prevalent in many real-world data sets [MRF14, JMH+16, VHF+18]
and present additional challenges for query performance. In contrast to integers,
any individual string generally does not fit into a single CPU register and requires
multiple instructions for each primitive operation (e.g. comparison). Strings are

64

4.4. USSR: A DYNAMIC STRING DICTIONARY

Strings Heap

s
e
T

t

s
e
T

t

o
N

s
e
T

t

s
e
T

t

r
O

(a) Typical Heap-based strings

Strings Heap

Unique Strings Self-aligned Region
BAADF00DDEADBEEF

s
e
T

t

o
N

r
O

Hello Test

hash(Hello) hash(Test)

(b) USSR encodes frequent values

Figure 4-4: String implementations

also often larger than integers, which negatively affects memory footprint and cache
locality. Furthermore, neither Domain-Guided Prefix Suppression nor Optimistic
Splitting can directly be applied to strings. This section presents a dynamic data-
structure called Unique Strings Self-aligned Region, which saves memory and enables
processing strings at almost the same speed as integers.

4.4.1 The Problems with Global Dictionaries

To improve the performance of strings, some main-memory database systems—most
notably SAP HANA [FCP+12]—represent strings using per-column dictionaries
where codes respect the value order. Using these dictionaries, string comparisons
and hashing operations can be directly performed on the dictionary keys, which
are fixed-size integers, rather than variable-length strings. Unfortunately, global
dictionaries have significant downsides, which have precluded their general adoption.
First, because random access to the dictionaries is common, the dictionaries must
fully reside in main memory. For systems that must manage data sets larger than
main memory (e.g. analytical column stores), this is a major problem. Furthermore,
systems that support parallel and distributed execution, including those designed
or optimized for the cloud, face the problem that bulk-loading or updating tables in
parallel would require continuous synchronization to maintain a consistent global
dictionary. Another downside is that dictionaries incur significant overhead for
inserts, updates, and deletes—in effect they are a mandatory secondary index on
every string column. If, for instance, new values appear, extending the dictionary
such that one additional bit is needed to represent a code, updates will no longer

65

4.4. USSR: A DYNAMIC STRING DICTIONARY

Data Region

Linear Hash Table

Unique Strings Self-aligned Region

DEADBEEF Hello BAADF00D Test 01010101

Hello Wo rld

64-bit Chunks

insert(Hello)
Hello

16-bit Hash 16-bit Index into
Data Region

...

...

512 kB

256 kB

Figure 4-5: Unique Strings Self-aligned Region (USSR) data structure details

fit in previously encoded data. Deletes of no longer used strings leave holes in the
code space that need to be garbage collected and inserts in sorted dictionaries often
require re-coding—which involves fully rewriting all encoded columns periodically.

Given these problems with global dictionaries, most database systems therefore limit
themselves to per-block dictionaries (e.g. one dictionary for every 10,000 strings).
With this approach, dictionaries are a local feature mainly used for compression
rather than a global data structure. Per-block dictionaries are often almost as
space-effective as per-column dictionaries, without sharing their in-memory limita-
tions and update overheads. For query processing, however, the advantage of per-
block dictionaries is limited. While some systems evaluate pushed-down selections
directly on the dictionary [LMF+16], all other operations require decompression
and therefore do not benefit from the dictionary. The reason is that the dictionary
is only available to the table scan operators. Materializing operators like hash join
and aggregation therefore typically allocate memory on the heap for every string,
as is illustrated in Figure 4-4a. Needless to say, this is very inefficient, yet for some
reason dealing with strings is only a sparsely researched topic.

4.4.2 Unique Strings Self-aligned Region (USSR)

The Unique Strings Self-aligned Region is a query-wide data structure that contains
the common strings of a particular query. In contrast to the heap, all strings within
the USSR are known to be unique, which enables fast operations on these strings.
To make it cache resident and efficient, the USSR has a limited size. Once it is full,
strings need to be allocated on the heap as usual. Figure 4-4b shows an example
with a mix of USSR-backed and heap-backed strings. By removing duplicates in
this opportunistic fashion, the USSR reduces the number of heap allocations and
therefore minimizes peak memory consumption.

66

4.4. USSR: A DYNAMIC STRING DICTIONARY

By default, both heap-backed and USSR-backed strings are represented as normal
pointers, which means that query engine operators can treat all strings uniformly
without any code modifications. This allows to retro-fit this idea easily into al-
ready existing engines. However, by exploiting the dictionary-like nature and artful
implementation of the USSR, the following additional optimizations become pos-
sible for USSR-based strings: (a) String comparisons are almost as fast as integer
comparisons. (b) Hashes are pre-calculated and stored within the USSR, speeding
up hash-based operators like join and group by. (c) Since the size of the USSR is
limited, frequent strings can also be represented using small integer offsets, which
can be exploited e.g. in Optimistic Splitting.

To summarize, the USSR is a lightweight, dynamic, and opportunistic string dic-
tionary. It does not require changes to the storage level but is implemented in the
query processor, and speeds up queries with low to medium string cardinalities,
which is where global string dictionaries excel.

4.4.3 Data Structure Details

Our USSR implementation limits its capacity to 768 kB: it consists of a hash table
(256 kB) and a data region (512 kB). Figure 4-5 serves as an illustration of the
USSR.

The 512 kB data region starts at a self-aligned memory address (i.e., the pointer has
0s in its lowest 19 bits). If one allocates 1 MB of data, there is always a self-aligned
address in its first half for the data region; and there is always either 256 kB space
before or after the data region for the hash table. The self-aligned memory address
guarantees that all pointers inside the data region start with the same 45 bits prefix.
This allows to very efficiently test whether a string pointer points inside the USSR
(by applying a mask).

The data region stores the string data and materializes the string’s hash value just
before it. These numbers are stored aligned, so the data region effectively consists
of 64k slots of 8 bytes where a string can start. Given that each string takes at least
two slots (one for the hash and one for the string) the USSR can contain maximally
32k strings.

When inserting a string, the USSR needs to check whether that string is already
stored, and if so, return its address rather than insert a new string. To do this in
low O(1), there is a fast linear probing hash table, consisting of 64k 4-byte buckets.
Each bucket consists of a 16-bit hash extract and a 16-bit slot number that points

67

4.4. USSR: A DYNAMIC STRING DICTIONARY

into the data region to the start of the string. The lowest 16-bits of the string hash
are used for locating the bucket, and the next 16-bits are the extract used to quickly
identify collisions. The load factor is always below 50% (64k buckets for at most
32k strings).

4.4.4 Insertion

The purpose of the USSR is to accelerate operations on frequent strings. In the
extreme, all strings could be part of the USSR. However, due to its limited size, the
USSR can only fit a sample. The sampling happens during insertion into the data
structure. Failure during insertion might happen because (a) the string is rejected
based on our sampling strategy or (b) a probing sequence of longer than 3 in the
linear hash table is detected (due to the low load factor, this is highly infrequent,
yet keeps negative lookups fast).

Our sampling strategy gives priority to string constants that occur in the query text;
these are inserted first. Subsequently, scans will insert strings until the USSR is
full. We argue that the fact that a string column is dictionary-compressed, indicates
that strings stem from a domain with a small cardinality. Therefore, these strings
are good candidates for insertion into the USSR.

Vectorwise stores and buffers data in compressed form and decompresses column
slices on the fly in the table scan operator. When reading a new dictionary-
compressed block, the scan needs to set up an in-memory array with string pointers.
Strings are represented as pointers in-flight in a query and decompression means
looking up dictionary codes into this array. Rather than pointing into the dictionary
inside the buffered block, when setting up this array, the scan inserts all dictionary
strings into the USSR, so (most of) these pointers will point into the USSR instead.
Insertion may fail, in which case the pointers still point into the block.

The sampling strategy further tries to optimize usage of the limited data region,
by failing inserts of long strings that occupy > min(F, max(2, ⌊ F

64 ⌋)) 8-byte slots,
where F is the free space in the data region (in slots). The idea is that it is better
to accept more small strings than a few large strings, in case space fills up.

4.4.5 Accelerating Hashing & Comparisons

The USSR can be used to speed up hash computations. After testing whether a
given string resides in the USSR using a bit-wise and operation, one can directly
access the pre-computed hash value, which physically precedes the string:

68

4.5. EVALUATION

inline u64 hash(char * s) {
if (((u64)s & USSR_MASK) != ussr_prefix)

return strhash (s); // compute hash
return ((u64 *) (s))[-1]; // exploit pre - computed hash

}

The USSR also speeds up string comparisons when both compared strings reside in
it. We exploit the fact that all strings within the USSR are unique. Hence, if the
pointers are equal, the strings themselves are:

inline bool equal (char * s, char * t) {
if ((((u64)s & USSR_MASK) != ussr_prefix) |

(((u64)t & USSR_MASK) != ussr_prefix))
return strcmp (s, t)==0; // regular string comparison

return s==t; // pointer equality is enough in USSR
}

4.4.6 Optimistic Splitting & the USSR

Optimistic Splitting and the USSR are complementary. The idea is to store USSR-
backed strings, as small integers, compactly in the hot area and heap-backed strings
in the cold area. Specifically, rather than storing string pointers in the hot area,
we store slot numbers, pointing into the USSR. As mentioned earlier, these slot
numbers are limited to 216, so they can be represented as unsigned 16-bit integers.

During packing, we represent exceptions using the invalid slot number 0 in the
hot area of the hash table, and store the full 64-bit pointer in the exception area.
Whenever a string needs to be unpacked, we first access the hot area and unpack the
slot number. For non-zero slot numbers, we can directly reconstruct the pointer of
the string (base address of USSR data region + slot*8). However, we can further
accelerate equality comparisons on strings by first comparing the slot numbers and,
only if they are 0, comparing the full strings. A USSR encoded string p can be
translated into a slot number quickly using (p » 3) & 65535.

4.5 Evaluation

In this section, we provide an experimental evaluation of our contributions to show
that our techniques improve performance as well as memory footprint.

Implementation. For this evaluation, we integrated Domain-Guided Prefix Sup-
pression, Optimistic Splitting, and the USSR into Vectorwise. Besides generating all
the necessary function kernels, we had to extend the domain derivation mechanism

69

4.5. EVALUATION

and implement our greedy packing algorithm. In addition, we modified the existing
hash table implementation, extended the hash join operator to take advantage of
compressed key and payload columns, as well as the hash aggregation (group by)
operator to support Optimistic Aggregates.

Content. We first evaluate the end-to-end performance on the TPC-H bench-
mark. We then present a high-level comparison on a real BI workload from Tableau
Public [VHF+18]. Next, we selected queries from the workload, provide a detailed
breakdown and explain the impact of our techniques. Afterward we move to micro-
benchmarks, analyze and discuss the impact of the USSR on string-intensive queries.
Then we evaluate the hash probe performance over varying hash table sizes and the
influence of different domains on hash table performance. Afterward, we present
and discuss the performance of our compression kernels, followed by an evaluation
of Optimistic SUM aggregates.

Experimental Setup. All experiments were performed on a dual-socket Intel
Xeon Gold 6126 with 12 physical cores and 19.25 MB L3 cache each. The system
is equipped with 384 GB of main memory. All results stem from hot runs using
single-threaded execution.

4.5.1 TPC-H Benchmark

We evaluated the impact of Domain-Guided Prefix Suppression, Optimistic Split-
ting and the USSR on the widely used TPC-H benchmark with scale factor 100.
We executed all 22 queries on our modified Vectorwise with and without our op-
timizations. We measured hash table memory footprint, as well as query response
time. First, we present and discuss the performance regarding memory footprint
and, afterward, query performance.

Memory Footprint. In Vectorwise the memory consumption of many queries,
particularly the TPC-H queries, is dominated by the size of hash tables. Therefore,
during the TPC-H power run, we measured hash tables sizes. Figure 4-6 shows the
compression ratios we measured.

Domain-Guided Prefix Suppression (CHT alone), without Optimistic Splitting and
USSR, was able to reduce hash table size by up to 4×. However, due to certain
hurdles, the compression ratio is often limited to 2×: (a) Aggregates are not com-
pressible without Optimistic Splitting. (b) Without the USSR, each string has to
be a 64-bit pointer into a string heap. On recent hardware, this requires storing at
least 48 bits with Domain-Guided Prefix Suppression. (c) As CHT does not make

70

4.5. EVALUATION

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

Q
ue

ry

01234 ShrinkingFactor

14
kB

24
M

B
69

M
B

64
kB

46
5M

B

no
HT

39
M

B
97

M
B

23
0M

B
65

8M
B

13
9M

B
80

kB
65

5M
B

36
2M

B
31

M
B

58
6M

B
2M

B
45

8k
B

7M
B

63
M

B
47

4M
B

11
7M

B

CH
T

al
on

e
CH

T
+

O
pt

im
ist

ic
(h

ot
ar

ea
)

Fi
gu

re
4-

6:
R

ed
uc

tio
n

in
ha

sh
ta

bl
e

m
em

or
y

fo
ot

pr
in

t
ov

er
T

PC
-H

w
ith

ba
se

lin
e

ha
sh

ta
bl

e
m

em
or

y
fo

ot
pr

in
t

(b
el

ow
th

e
ba

r)

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

Q
ue

ry

−
1001020304050

Improvement(%)

10
.3

s

0.
6s

0.
7s

0.
3s

5.
1s

0.
6s

3.
5s

3.
7s

26
.1

s
3.

5s
1.

4s
1.

2s
13

.3
s

2.
9s

0.
7s

4.
1s

6.
9s

9.
1s

10
.1

s
4.

6s
18

.1
s

5.
8s

US
SR

al
on

e
CH

T
al

on
e

CH
T

+
O

pt
im

ist
ic

+
US

SR

Fi
gu

re
4-

7:
Im

pr
ov

em
en

t
ov

er
T

PC
-H

po
w

er
ru

n
w

ith
ba

se
lin

e
tim

es
(u

nd
er

th
e

ba
r)

71

4.5. EVALUATION

sense for CPU cache-resident hash tables, we do not enable it if the hash table
is small, based on optimizer estimates. The impact of (a) and (b) on the active
working set will be reduced using Optimistic Splitting and the USSR.

Optimistic Splitting aims at improving performance through more efficient cache
utilization by separating the hash table into a thin frequently accessed table (hot
area) and a rarely accessed table (cold area). In combination with the USSR we
measured a 2–4× smaller hot area (CHT + Optimistic (hot area)) in many TPC-H
queries.

However, Optimistic Splitting in fact increases (rather than reduces) the overall
memory consumption as it introduces additional data. For example, splitting a 128-
bit SUM aggregate will introduce an additional aggregate with a smaller size, but the
full 128-bit aggregate will still reside in the cold area. Table 4.2 shows the relative
memory footprint of vanilla Vectorwise against the combination of Domain-Guided
Prefix Suppression, Optimistic Splitting and the USSR. Over TPC-H we measured
up to 2.1× lower memory consumption. However, in comparison to Domain-Guided
Prefix Suppression alone, Optimistic Splitting achieves an inferior compression ratio.
The main idea behind Optimistic Splitting is to reduce memory pressure rather than
overall memory consumption.

Query Performance. To demonstrate the performance benefits of the USSR,
Domain-Guided Prefix Suppression and Optimistic Splitting, we visualize the query
response times of all 22 TPC-H queries in Figure 4-7. We split our analysis into
three stages. First, we evaluate the impact achieved by only using USSR. Then we
discuss the effects of only using Domain-Guided Prefix Suppression. Finally, the
influence of the combination of all three techniques will be discussed.

The idea of the USSR is to boost operations on frequent strings. However, TPC-H
is not an extremely string-intensive benchmark. Nonetheless, by using the Unique
Strings Self-aligned Region (USSR alone) three queries (Q4, Q12 and Q16) showed
significant performance gains. All three benefit from faster string hashing and
equality comparisons provided by the USSR and improve by up to 45%.

Apart from the string-specific USSR, Domain-Guided Prefix Suppression aims at
shrinking hash tables and providing operations on compressed data. We found
that Domain-Guided Prefix Suppression accelerates most queries (CHT alone) by
up to 30%. In most queries we noticed an improvement of at least 10%. This is
caused by the more efficient expression evaluation that smaller data types provide
and the more cache-efficient hash table that allows equality comparisons directly on

72

4.5. EVALUATION

Ta
bl

e
4.

2:
R

ed
uc

tio
n

in
ha

sh
ta

bl
e

m
em

or
y

fo
ot

pr
in

t
on

T
PC

-H
co

m
pa

rin
g

va
ni

lla
Ve

ct
or

w
ise

ag
ai

ns
t

op
tim

ist
ic

al
ly

co
m

pr
es

se
d

ha
sh

ta
bl

es
in

cl
ud

in
g

ho
t

an
d

co
ld

ar
ea

Q
ue

ry
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
Fa

ct
or

0.
8

1.
6

1.
5

1.
0

2.
0

0.
0

1.
1

2.
0

1.
4

1.
4

1.
0

1.
0

1.
4

2.
1

1.
0

1.
0

1.
3

1.
6

1.
6

1.
3

1.
4

1.
6

Ta
bl

e
4.

3:
Sp

ee
du

p
an

d
U

SS
R

st
at

ist
ic

s
fo

r
w

or
kb

oo
k

C
om

m
on

G
ov

er
nm

en
t

Q
ue

ry
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
Sp

ee
du

p
2.

1
1.

4
2.

2
1.

4
1.

3
1.

0
1.

2
1.

0
1.

5
1.

8
1.

1
2.

2
2.

2
1.

8
1.

5
2.

1
1.

4
1.

1
1.

4
1.

1
U

SS
R

Si
ze

(k
B

)
1.

8
0.

5
2.

0
0.

3
66

.1
51

2.
0

83
.2

51
2.

0
12

.7
7.

2
11

2.
4

1.
9

1.
8

7.
2

1.
8

2.
0

1.
8

11
0.

3
0.

3
51

2.
0

R
ej

ec
tio

n
R

at
io

(%
)

0.
0

0.
0

0.
0

0.
0

0.
0

18
.3

0.
0

32
.8

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

0.
0

21
.1

#
R

ej
ec

te
d

0
0

0
0

0
37

62
7

0
30

20
4

0
0

0
0

0
0

0
0

0
17

0
13

74
2

#
C

an
di

da
te

s
13

12
27

20
10

56
15

04
73

20
0

20
54

40
77

29
6

92
20

8
65

6
67

68
11

07
04

10
72

12
32

67
52

37
92

13
60

38
08

99
74

4
17

28
65

22
2

#
St

rin
gs

in
U

SS
R

46
16

49
11

22
51

12
22

7
28

35
12

21
8

25
2

16
5

30
41

48
45

16
7

51
49

51
29

90
11

21
34

3
Av

er
ag

e
St

rin
g

Le
ng

th
23

3
20

5
18

26
19

29
21

25
23

22
22

25
18

22
19

23
5

11
B

as
el

in
e

R
un

tim
e

(s
)

0.
15

0.
27

0.
13

0.
17

0.
37

3.
48

0.
39

0.
54

0.
18

0.
16

0.
29

0.
14

0.
14

0.
16

0.
18

0.
14

0.
17

0.
27

0.
18

0.
51

B
as

el
in

e
H

T
siz

e
(M

B
)

0.
05

0.
09

0.
05

0.
09

0.
14

82
.1

1
0.

14
9.

12
0.

07
0.

05
0.

11
0.

05
0.

05
0.

05
0.

05
0.

05
0.

05
0.

11
0.

09
8.

11

73

4.5. EVALUATION

compressed keys. Notably, the regression in Q2 was caused by type casting overhead
due to opportunistic shrinking of data types. We highlight that the purpose of
Domain-Guided Prefix Suppression is mostly to reduce the memory footprint and
not necessarily to speedup query evaluation.

When combining all three techniques (Domain-Guided Prefix Suppression, USSR
and Optimistic Splitting) we measured gains up to 40% (CHT + Optimistic +
USSR). We measured additional improvements from 5%, in Q1, up to 10%, in
Q15. Both queries benefited from the Optimistic SUM aggregate, which boosted the
aggregate computation.

We ran all 22 queries with intra-query parallelism and noticed similar performance
improvements. However, as these runs were considerably more noisy and would not
contribute significant new information, we excluded them from this chapter.

4.5.2 Public BI Benchmark

It has been noted that synthetic benchmarks like TPC-H do not capture all rel-
evant aspects of real workloads [CG12, BAK17]. Recently, a workload study was
published [VHF+18] based on the Tableau Public1 Business Intelligence (BI) free
cloud service. It analyzes its workbooks (data and queries generated by the Tableau
BI tool) and specifically notes that users make extensive use of string data types
(i.e. strings are by far the most common data type; used for 49% of all values).
Not only is text data prevalent in these workbooks, but it is also observed that
date columns, numeric and decimal columns are often stored as strings; arguably
suboptimally, but often this is related to data cleaning issues. Regrettably, this
study did not publish the data and queries as an open benchmark, also upon our
request to Tableau. Inspired by this work, we manually downloaded the 48 biggest
Tableau Public workbooks (400 GB data) and extracted the SQL statements from
its query log. This workload is now available in open-source as the Public BI
Benchmark 2. As a representative example, we focus on one of its workbooks:
CommonGovernment.

CommonGovernment. We extracted all 43 queries and all 13 tables. Each
table contains around 8 GiB of data in CSV format. Unlike TPC-H, each table
contains many string columns and columns that contain NULL values are common.
We executed each query sequentially, and Table 4.3 shows the measured effects on
the runtime.

1https://public.tableau.com
2https://github.com/cwida/public_bi_benchmark

74

https://public.tableau.com
https://github.com/cwida/public_bi_benchmark

4.5. EVALUATION

Q1 Vanilla
Q1 USSR

Q2 Vanilla
Q2 USSR

Q4 Vanilla
Q4 USSR

0

200

400

600

Ti
m

e
(M

Cy
cle

s)

Scan + Decompress
Hash Computation
Key Check

Bucket Lookup
Remaining Primitives
Interpreter Overhead

Figure 4-8: Query time breakdown for selected queries of workbook Common-
Government

The workbook CommonGovernment is string-intensive: using only the USSR, we
measured a speedup of up to ≈ 2× (55% improvement). These speedups are caused
by the fact that on the one hand, many strings originate from a small domain of
unique strings and thus become resident in the USSR. On the other hand, many
strings are long enough to significantly impact string operations to cause a speedup
of the whole query.

Q6, Q8 and Q20 show no significant benefits from the USSR mainly because the
string columns have a large unified dictionary (that does not even fit fully in the
USSR). While dictionary-coded decompression in Vectorwise has a sub-cycle per/-
tuple cost, the effort of setting up the dictionary array when the scan moves to a
new disk block increases, when the per-block dictionary size increases. With the
USSR, this setting-up effort becomes significantly higher, as all dictionary strings
must be looked up in the USSR linear hash table. Moreover, with larger dictionar-
ies per block, each dictionary string has a lower repetition count during execution;
so the amortization of the setting-up investment by faster hashing and comparison
decreases. Still, we see that we make a good trade-off, as queries Q8 and Q20 still
get (marginally) faster, and only Q6 is marginally slower.

In general, the Public BI workload is characterized by few joins and many aggre-
gations [VHF+18], where these aggregations produce small results—few or in the
thousands, but almost never in the millions of tuples. This means that the hash
tables needed for aggregation are often CPU cache-resident. Therefore, CHT is not
triggered and that the USSR is what most matters in this workload, so we focus
only on that.

75

4.5. EVALUATION

2 4 8 16 32 64 128 256 512
String Length

0

20

40

60

80

Sp
ee

du
p

2 2 2 3 3 44 4 4 6
1 2 1 2 2 3 5

Comparison
Hash Computation

Query

Figure 4-9: Group-By on string keys: Speedup vs. length

Breakdown. On the string-intensive workbook CommonGovernment the USSR
caused many queries to improve up to ≈ 2×. Figure 4-8 shows a breakdown of the
query time for Q1, Q2 and Q4. For Q1, we now discuss how close 2× comes to the
optimal speedup: The USSR led to a roughly 7× faster hash computation and a
2× faster key check (check whether keys are equal). This led to a total speedup
of 2×. Assuming zero cycles would be spent on hash computation and key checks,
then one could achieve a total of 3×. This, however, is a theoretical optimum and
is unlikely to be achieved when performing these operations.

4.5.3 Micro-Bench: USSR and Group-By

We now move to a number of micro-benchmarks to focus on individual performance
aspects of string processing with the USSR. We start with the performance on a
SELECT COUNT(*) FROM T GROUP BY s query. These strings came from a domain of 10
unique strings, all strings had the same length. Figure 4-9 shows the speedups that
can be achieved using the USSR. We profiled the time spent on string comparisons
when checking the keys inside group by’s hash table. These results show significant
speedups reaching from a 2× to 50× faster string comparison. Similarly, we profiled
the time spent on computing hash of the string keys. This results in speedups
reaching from 4× for small strings, to 80× for large strings.

Besides the significant speedup in terms of string comparison and hash computation,
we also noticed significant speedup of the whole query, up to ≈ 25×.

4.5.4 Micro-Bench: Join Probe Performance

We now micro-benchmark Domain-Guided Prefix Suppression, regarding hash table
lookup performance. Our experiment consists of a simple join query where we vary
the size of the inner relation and the domain of the key columns. We experimented
with two and four key columns, four payload columns with values v ∈ [0, 10].

76

4.5. EVALUATION

104 105 106 107 108

Cardinality

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

e
Sp

ee
du

p

Hash Probe (vanilla/compact)

106

107

108

109

#
LL

C
m

iss

LLC miss (compact) LLC miss (vanilla)

(a) 4 keys k1, ..., k4 ∈ [0, 1.000] whereas
schema suggests 64-bit integers

104 105 106 107 108

Cardinality

0.5

1.0

1.5

2.0

2.5

3.0

Pr
ob

e
Sp

ee
du

p

Hash Probe (vanilla/compact)

106

107

108

109

#
LL

C
m

iss

LLC miss (compact) LLC miss (vanilla)

(b) 2 keys k1, k2 ∈ [0, 106] whereas
schema suggests 128-bit integers

Figure 4-10: Hash probe speedup vs. build-side cardinality using 4 payload columns
p1, ..., p4 ∈ [0, 10]

Figure 4-10 visualizes the speedup, as well as, the L3/last-level cache (LLC) misses
measured. We observe an up to 2.5× faster hash probe, including the tuple recon-
struction cost. The measured speedups tend to increase with hash table size (size of
inner relation). For large hash tables with more than 106 rows, the speedups were
caused by the significantly smaller and, consequently, more cache-resident hash ta-
ble. For hash tables with less than 106 rows, performance was mostly affected by
the more efficient comparisons directly on compressed data.

4.5.5 Micro-Bench: Hash Join Key Domain

The compression ratio and access performance of Domain-Guided Prefix Suppres-
sion depends on the domain of the input values. We now micro-benchmark the
effects of input domain(s) on hash join build time and compression ratio. We exe-
cuted a simple (hash) join query with a large fixed-size inner (build) relation over
multiple domains, with multiple keys (2 and 4) and without any payload columns.
We measured build time, as well as, hash table size.

First, we investigated the impact of Domain-Guided Prefix Suppression on the build
phase. Figure 4-11a shows the results. We noticed a pronounced increase in perfor-
mance, ranging from 25% up to 2×.

As mentioned, the performance of Domain-Guided Prefix Suppression depends on
the compression ratio. Figure 4-11b shows the hash table size with and without our
compression technique. For small domains, here [0, 10] and [0, 1000], we notice a
compression ratio from 2× to 2.5×. With two keys, the compression ratio is limited

77

4.5. EVALUATION

[0, 10] [0, 1000] [0, 104] [0, 106]
Domain

0

10

20

30

40
Bu

ild
Ti

m
e

(G
Cy

cle
s)

Vanilla (2 keys)
Compact (2 keys)

Vanilla (4 keys)
Compact (4 keys)

(a) Build time

[0, 10] [0, 1000] [0, 104] [0, 106]
Domain

0

5

10

15

20

25

Si
ze

(G
B)

Vanilla (2 keys)
Compact (2 keys)

Vanilla (4 keys)
Compact (4 keys)

(b) Hash table size

Figure 4-11: Hash join performance vs. key domain

by the output type size of our transformation, where we have to round up to that
type’s size. Using more keys, we can fill the output word more densely and, hence,
achieve a higher compression ratio up to 2.5×. For larger domains, [0, 106], our
scheme cannot achieve a high compression ratio, since there are simply not enough
redundant 0-bits to suppress.

4.5.6 Micro-Bench: Memory Footprint against other Hash
Tables

We benchmarked the memory footprint of our compressed hash tables against linear,
Concise [BLP+14] and uncompressed bucket-chained hash tables. Table 4.4 shows
the reduction in memory footprint.

We observed that especially for large and wide hash tables, common in analytical
queries, our compressed hash table easily out-performs the three other designs by
≈ 2× to 7×. For extremely thin hash tables, our compressed bucket-chained hash
table, shows additional overhead as next pointer, as well as bucket pointer needs to
be stored. However, this is merely a limitation of our implementation. By applying
Domain-Guided Prefix Suppression to the Concise Hash Table, one could easily
construct a much more memory-efficient hash table.

4.5.7 Micro-Bench: Compression Overhead

Our next micro-benchmark showcases that Domain-Guided Prefix Suppression is
very lightweight and compression overhead for common types is negligible. The
compression performance is visualized in Figure 4-12. For native integer types,

78

4.5. EVALUATION

Table 4.4: Reduction in memory footprint of our compressed hash table vs. other
hash table designs. With n values ∈ [0, 216) and 50% fill rate. Higher is better.

|Inner| #64-bit Values
1 2 4 8 16 24 32

Linear Hash Table
1k 2.0× 3.2× 4.6× 5.8× 6.7× 7.1× 7.3×
1M 1.1× 2.0× 3.2× 4.6× 5.8× 6.4× 6.7×
1G 1.1× 2.0× 3.2× 4.6× 5.8× 6.4× 6.7×

Concise Hash Table [BLP+14]
1k 1.1× 1.6× 2.3× 2.9× 3.4× 3.6× 3.7×
1M 0.6× 1.0× 1.6× 2.3× 2.9× 3.2× 3.4×
1G 0.6× 1.0× 1.6× 2.3× 2.9× 3.2× 3.4×

Bucket-chained Hash Table
1k 1.8× 2.2× 2.7× 3.2× 3.5× 3.7× 3.7×
1M 1.4× 1.8× 2.2× 2.7× 3.2× 3.4× 3.5×
1G 1.4× 1.8× 2.2× 2.7× 3.2× 3.4× 3.5×

int8 int16 int32 int64 int128
Input type

0

1

2

3

4

5

Pa
ck

Ti
m

e
(c

yc
les

/o
ut

pu
tv

alu
e) 2 inputs

3 inputs
4 inputs

(a) Packing values into 32-bit integers

int8 int16 int32 int64 int128
Input type

0

1

2

3

4

5

Pa
ck

Ti
m

e
(c

yc
les

/o
ut

pu
tv

alu
e) 2 inputs

3 inputs
4 inputs

(b) Packing values into 64-bit integers

Figure 4-12: Compression performance of bit-packing the first 8 bits of each input

namely 8, 16, 32 and 64-bit, our implementation can compress between 1 and 2
output values per cycle. In contrast, packing 128-bit integers is significantly slower.
However, 128-bit integers rarely occur in real-world data sets and mainly stem from
aggregates, for which we use Optimistic Splitting (such that packing/unpacking
128-bits values is not needed).

4.5.8 Micro-Bench: Optimistic Splitting

Finally, we micro-benchmark the effectiveness of Optimistic Splitting for SUM ag-
gregates. We evaluated the performance of 128-bit optimistic SUM in the following
experiment:

We sum up 64-bit integers into a 128-bit aggregate. We implemented a vectorized
“full” aggregation that adds each 64-bit value into the 128-bit aggregate and an
optimistic version with a 64-bit partial aggregate. Each vectorized aggregation

79

4.5. EVALUATION

235 240 245 250 255 260

Input Value x

2.0

2.5

3.0

3.5

Av
er

ag
e

Ac
ce

ss
(c

yc
les

/i
te

m
)

Software (1 Group)
CPU Flag (1 Group)

Software (4 Groups)
CPU Flag (4 Groups)

Figure 4-13: No noticeable difference between optimistic SUM overflow checking in
software vs. CPU overflow flag

236 242 248 254 260

Input Value x

2.0

2.5

3.0

3.5

Av
er

ag
e

Ac
ce

ss
(c

yc
les

/it
em

)

Optimistic SUM
Full SUM

Optimistic SUM (≥ 0)
Full SUM (≥ 0)

25

212

219

226

#
Ex

ce
pt

ion
s

#Exceptions

(a) 4 groups

236 242 248 254 260

Input Value x

2.0

2.5

3.0

3.5

Av
er

ag
e

Ac
ce

ss
(c

yc
les

/it
em

)

Optimistic SUM
Full SUM

Optimistic SUM (≥ 0)
Full SUM (≥ 0)

23

28

213

218

#
Ex

ce
pt

ion
s

#Exceptions

(b) 1024 groups

Figure 4-14: Aggregation methods for 128-bit SUM aggregate with 64-bit integers as
input

primitive processes cache-resident vectors of input values, indices, aggregates, and
data. We used 232 input values each equal to a constant x. Each value is then
summed up per group. To control overflows, we varied the constant x and the
number of groups. All aggregates (full and partial) are stored in a table in row-wise
layout (NSM).

First, we evaluate overflow checking in software (as in our earlier spec_sum pseu-
docode) vs. overflow checking in hardware (i.e., using the CPU overflow flag).
Figure 4-13 shows the average computation time of each aggregate using different
techniques. We want to highlight that, for 1 and 4 groups, we measured no sig-
nificant difference between them. This verifies our design choice to implement the
Optimistic SUM using software-based overflow logic, which is also portable.

80

4.6. CONCLUSION

Second, we compare the Optimistic SUM against the full 128-bit SUM. Figure 4-14
plots the average runtime of each aggregation method against the input values. We
have separated two cases: (a) the full-blown optimistic SUM and (b) if one can prove,
using MinMax information, the absence of negative values, one can optimize the
SUM further. Regardless of the number of groups in the aggregation (4 or, 1024),
it can be observed that (positive-only) Optimistic SUM significantly outperforms the
full SUM for positive inputs and for values ≤ 261. The Optimistic SUM’s performance
heavily depends on the number of exceptions as for each exception it requires two
reads, two writes, two additions, as well as two/three branches. For 4 groups, the
Optimistic SUM is slower than full SUM, still the optimized version for only positive
inputs is the fastest for values up to 261. For 1024 groups, we observed that the
Optimistic SUM in both flavors, outperforms the full SUM by 2×. This is caused by
more efficient memory access.

4.6 Conclusion

In this chapter, we explored efficient approaches for exploiting compressed data
inside query processing pipelines:

Compressed Hash Tables. Hash tables are often used data structures for efficient
query processing. Typically, hash tables are used to in join and group-by operations.
However, accessing hash tables becomes more time-consuming the larger they are
due to increasing cache miss penalties. Therefore, we explored the idea of using
compression to ease the cache miss penalties. We explored three methods: Domain-
Guided Prefix Suppression, Optimistic Splitting and the USSR.

Domain-Guided Prefix Suppression compresses keys and values based on their
Min/Max information. Once, the Min/Max of each value is known, we know the
number of bits required to store each value (works for integers and fixed-point
numbers, both are often used in RDBMS). With this information, we generate a
compressed data layout for each hash table row. In essence, this layout tries to
pack the bits tightly (i.e. bit-packing multiple columns together but allowing gaps).
During runtime, we efficiently compress and decompress using the generated lay-
out. Notably, key checks can be realized, without decompression, by transforming
the keys into the same representation as the compressed data. Consequently, this
allows checking multiple key columns using one key check (assuming they can be
compressed into one word). In certain cases, Domain-Guided Prefix Suppression
is not very effective: (a) aggregates require decompressing each value, updating
and compressing it again (repeated compression/decompression overhead) and (b)

81

4.6. CONCLUSION

strings as it is challenging to shrink 64-bit pointers (pointing to the string data).
Point (a) is tackled by Optimistic Splitting, while point (b) can be solved through
dictionary compression (e.g. using Unique Strings Self-aligned Region) and Opti-
mistic Splitting.

Optimistic Splitting decomposes frequently accessed area (hot) from rarely ac-
cessed (cold) area. To achieve this, we assume that most values will be in a given
range. These values will be stored in the hot area. For the remaining values outside
that range, we store a marker in the hot area (marking it as an exception) and store
the data in the cold area. Consequently, during runtime most accesses will access
only the hot area, and only in exceptional cases, we have to access the cold area
too. By tuning (shrinking) the range, we can further minimize the hot area and,
therefore, make the working set more cache resident.

In practice, this works very well for aggregates (especially SUMs). While it can be
applied to other types (keys or values in hash tables) as well, it requires extensive
tuning to guarantee that most values access only the hot region.

Unique Strings Self-aligned Region (USSR) is an opportunistic on-the-fly dic-
tionary for frequent strings. The USSR accelerates hash computation and equality
comparisons on frequently occurring strings. Furthermore, in combination with Op-
timistic Splitting, the USSR allows representing frequent strings using short 16-bit
integers (indexes into the USSR), instead of full 64-bit pointers. These small 16-bit
integers are then inserted into the hot area of the compressed hash table.

Summary. In summary, we have observed that, even though the query plan stayed
constant, there is a multitude of possible implementation options exploiting specific
data properties to more efficiently process data: Domain-Guided Prefix Suppres-
sion depends on the range of values (like Compact Data Types from Chapter 3),
Optimistic Splitting depends on the frequently used range of values, i.e. specula-
tive extension of Compact Data Types, and the USSR depends on the number of
distinct strings as well as the string lengths.

Lessons Learned from Manual Exploration. While the “tricks” from the
previous and this chapter improved query performance, they:

(a) Required a tedious, repetitive and, in the case of this chapter, substantial
engineering effort, and

(b) Relied on properties that are, unfortunately, not always known beforehand, i.e.
before evaluating the physical query plan. Most notably, cardinalities (hash

82

4.6. CONCLUSION

table sizes, number of groups in group-by) are difficult to predict [LGM+15],
especially in complex query plans. The same is true for more complicated
statistics such as data distributions required to determine frequently used
ranges.

(c) Very often the best implementation is influenced by the hardware (see Chap-
ter 7). Additionally, other factors outside the DBMS can affect performance
(concurrent processes, CPU temperature, ...). Generally, these factors are ex-
tremely challenging to predict using cost models, especially their effect on the
performance of the whole query.

The following two chapters (Chapters 5 and 6) tackle (a) i.e. reduce the engineering
effort to explore new points. Points (b) and (c) are addressed by Chapter 8 which
proposes to try specific implementations while the query is running and, thus, finds
the best implementation micro-adaptively.

83

4.6. CONCLUSION

84

CHAPTER 5

Encapsulating the Essence in VOILA

Any problem in computer science
can be solved with another level of
indirection.

David Wheeler

5.1 Introduction

From the previous chapters, we have motivating evidence that the design space offers
many opportunities (e.g. by exploiting data properties or different operator imple-
mentations). However, these exploratory steps were extremely time-consuming, as
they required writing and testing code. Moreover, it is not clear how these design
space points translate to other query execution paradigms. Therefore, for large-scale
exploration, this process is, obviously, not suitable.

In this and the following chapter, we move towards a systematic and more scalable
approach of exploring the design space. In particular, here, we first abstract query
execution using a domain-specific language (VOILA). In the first section, we discuss
why existing domain-specific languages were not suitable and explain why VOILA

85

5.2. VOILA

Abstract

Data Parallel

Low-level Imperative Vector Models

PlansComprehensions
Monad/Monoid

VOILA

Figure 5-1: VOILA strikes the sweet spot between data parallelism and abstraction.

hits the sweet spot between multiple paradigms, as illustrated in Figure 5-1. After-
ward, we formally specify the semantics of VOILA programs. In the third section,
we show how often-used plan operators can be expressed in VOILA, followed by a
discussion of how VOILA has been extended to integrate multi-thread parallelism.

5.2 VOILA

During query evaluation, database systems often apply the same algorithms and
data structures, i.e. the same physical operators (hash join, hash group-by etc.).
The major difference lies in their physical execution strategy (compiled/interpreted
tuple/vector/column-at-a-time). We argue that operators should be described in a
way such that we, later, can synthesize different execution strategies. Our domain-
specific language VOILA (Variable Operator Implementation LAnguage) is tailored
for this purpose. It describes the algorithmic details of an operator while abstracting
the physical execution strategy away.

5.2.1 Core Concepts

High-level Languages are not well-suited. Many high-level languages can ex-
press algorithms relevant to database engines, for which one can generate many
different implementations (flavors). Notable, and well-known, examples include
MIL [Bon02], Voodoo [PMZM16], QMonad [SKP+16] and Weld [PTS+17]. How-
ever, these languages lack the ability to describe algorithmic details. Suppose we
want to express a hash table lookup. Due to their level of abstraction MAL, QMonad
and Voodoo are unable to represent a simple hash table lookup. Instead, they en-
force the usage of higher level concepts, like a hash join. Consequently, when gen-
erating many flavors from this description, one would have to re-implement many
different joins. Being slightly more low-level, Weld can represent dictionary lookups

86

5.2. VOILA

via a primitive building block. This has two major disadvantages: (a) It is not eas-
ily possible to optimize specific fragments of the hash table lookup (e.g. fusing key
checks for composite keys) without requiring a new lookup implementation. (b)
When synthesizing different execution strategies, new black-box hash table lookups
have to be re-implemented for each strategy.

Besides their inability to express algorithmic details, high-level languages often in-
troduce complex nested data structures for intermediate values. Compared to sim-
ple intermediates (scalars, arrays), complex intermediates are typically slower to
access (e.g. compare accessing a nested linked-list to a flat array) and consume
more memory. To mitigate this problem, high-level languages have optimization
passes that deal with removing complex intermediates. However, removing these
intermediates is a very costly process (in NP-time), called deforestation [Wad88].

Both properties, the inability to express algorithm details and the problems caused
by complex intermediates, render high-level languages unsuited for our purpose.

VOILA to the rescue. To mitigate these disadvantages, we propose to decompose
complex operations (hash table lookup) into multiple simpler operations. In VOILA,
we decompose a hash table lookup into: hash computation, bucket lookup, key
check (gather & equality check), navigation to the next bucket and a loop to iterate
over hash collisions. This decomposition describes how a hash table lookup is to be
performed, but still omits specific details such as hash table design (bucket-chained,
linear probing, ...), data layout (row-wise, columnar, hybrid) or execution strategies
(data-centric, vectorized, interleaved prefetching, ...). From the example it is evident
that VOILA is more high-level than low-level languages (e.g. C, LLVM IR [LA04]
or ScalLite [SKP+16]), but more low-level than languages such as Voodoo and
MIL/MAL. Thus, it bridges the gap between typical high- and low-level languages.
After decomposing algorithms into high-level primitives, we can synthesize a specific
implementation for each primitive and, thus, the whole algorithm.

Block-wise Execution. To abstract the physical execution from the logical de-
scription, operations in VOILA always operate on multiple values (vectors) at once.
Scaling the vector size allows covering value-at-a-time (vector size 1) to column-at-
a-time (vector size ∞) as well as the design points in between (e.g. SIMD with 8
values-at-a-time). Most operations on vectors can happen completely data-parallel.
The rationale of first-class support of block-wise execution is that re-discovering
data-parallelism from sequential code is very hard, e.g. neither GCC nor LLVM
properly vectorize loops with branches.

87

5.2. VOILA

Inferred Types. Expressions and variables in VOILA do not specify data types be-
cause they can be inferred automatically, from schema and program. This provides
additional flexibility to add type-based optimizations (e.g. exploiting thinner data
types for faster arithmetic see Chapter 3, or faster hash table access as explained
in Chapter 4).

Predication. In our use-case, it is common to only process parts of the data,
e.g. when tuples get logically removed (filtered out). In VOILA filters create pred-
icates, which can be attached to operations, but can also be inferred. Note that
predicates are required for synthesizing an efficient vectorized implementation á la
Vectorwise [BZN05] from VOILA.

Operator Context. Commonly, when lowering higher-level into a lower-level lan-
guage, e.g. physical plan into LLVM IR, the operator context disappears. After
lowering, it will be very hard or impossible to determine which operations belong
to which operators. To be able to, later, synthesize iterator-based operators from
VOILA, we chose to keep the operator context.

5.2.2 Language

VOILA describes operators as imperative programs with high-level primitives. Each
description consists of a list of statements (evaluation, assignment, LOOP, EMIT).
Statements contain expressions. Expressions can either be literals (variables, con-
stants) or functions on expressions (see Table 5.1). Statements, as well as expres-
sions, logically operate on data vectors. After filtering, instead of forcing materi-
alization of vectors, i.e. removing the deselected items, VOILA allows augmenting
statements and expressions with predicates (op | predicate). Predicates can be
thought of a (bit)mask that annotates that if the predicate yields true on a tuple,
the operation can safely be applied. Though, that representation is conceptual –
in the data-centric VOILA backend, for-instance, no bitmaps exist and the predi-
cate will be translated into a branch. In VOILA, operators, as well as statements
therein, are stateful, they e.g. maintain a hash table. The EMIT statement moves
tuples of vectors, resulting from expressions, to the following operator. Logically,
all expressions and statements operate on data vectors. Expressions either, in case
of functions, apply the function element-wise on the data vector(s) – all vectors are
required to have the same length – or, in case of a constant, broadcast a constant
to all elements. The result of expressions can be stored in variables. Assignments
behave similar to other imperative languages and, logically, copy all values of the
data vector into the destination variable. This allows updating the same variable.

88

5.2. VOILA

Table 5.1: Expressions & Statements in VOILA. x, y denote values or expressions.
c denotes a table column. ht denotes a hash table. b denotes a hash bucket, also
an expression.

Operation Description
Comparison/arithmetic/logic
eq(x, y) x == y
not(x) !x
add(x, y) x + y
cast_i32(x) Casts x to (signed) 32-bit integer
hash(x) Computes hash of x
...
Hash Table
bucket_insert(ht, b) Create new bucket(s) in hash table
bucket_lookup(ht, b) Given hash values, find initial buckets
bucket_next(ht, b) Given bucket(s), find next bucket(s) in chain
Table/Array
scatter(c, b, x) Scatter values into bucket(s)
gather(c, b) Gather values from buckets
read_pos(t) Allocate next consecutive read position

from table t
write_pos(t) Allocate next consecutive write position

from table t
write(c, p, x) Consecutive write data to column starting

from position p
read(c, p) Consecutive Read from column starting

from position p

Table Aggregates
aggr_count(c, b) Count active values (via predicate) in

table’s column c at index b
aggr_sum(c, b, x) Sum values in table’s column c at index b
...
Data Inflow
scan_pos(t) Allocate next consecutive scan position
scan(c, p) Returns column chunk from position p

Predicate
seltrue(x) Selected if x is true
selfalse(x) seltrue(not(x))
selvalid(x) Selected if x is valid.

[read, write, scan]_pos can return an
invalid position

selunion(x, y) Selected if x is true or if y is true
(x and y are both predicates)

89

5.2. VOILA

Listing 5.1: Hash group-by in VOILA.
LOCAL HASHTABLE ht(k1 KEY , sum1 VALUE)

2
GroupBy (T) {

4 h = hash(T[0])
|miss = seltrue (true)

6
LOOP |miss { // repeat until every tuple is processed

8 bucket = bucket_lookup (ht , h)
empty = eq(bucket , 0)

10 |hit = selfalse (empty)
|miss = seltrue (empty)

12
LOOP |hit { // hash probing

14 htkey = gather (ht.k1 , bucket)
equal = eq(htkey , T[0])

16 | found = seltrue (equal)

18 // compute aggregates
aggr_sum (ht.sum1 , bucket |found , T[1])

20
// continue with non - matching tuples

22 |hit = selfalse (equal)
bucket = bucket_next (ht , bucket |hit)

24 empty = eq(bucket , 0)
|miss = selunion (| miss , seltrue (empty))

26 |hit = selfalse (empty)
}

28
// optimistically insert non - matching tuples

30 new_pos = bucket_insert (ht , h |miss)
// copy key T[0] into column ’k1 ’

32 | can_scatter = selvalid (new_pos)
scatter (ht.k1 , new_pos | can_scatter , T[0])

34 } }

Using different predicates, one can overwrite different positions of the same variable.
Besides assignments, VOILA also allows fixed-point iteration via loops, similar to
C’s while statement. Different is that in VOILA the loop condition is a predicate
and is only true, as long as at ≥ 1 items in the vector qualify.

Example. We explain VOILA using the hash group-by in Listing 5.1 as an example.
First we declare the required data structures (line 1), then we describe the operator:
Commonly an operator receives an input (T) which is a tuple of vectors. In this
case, we use the T to find the final hash bucket, and to directly compute aggregates
(commented out). We first extract the key (T[0]) and hash the value. Afterward,
we initialize the predicate miss to select all tuples. As long as there are misses, we
repeat the following process (7):

We look up the first bucket and check whether it is 0, i.e. empty. For buckets that
are ̸= 0, we repeatedly follow the bucket chain (13), check the keys (13 & 14) and
compute the aggregate(s) using these positions (19). Afterward, we continue with
the buckets that did not match any keys (21) and follow the bucket chain (23). If
we notice the end of the bucket chain, we have new misses (values that have to be

90

5.3. FORMAL SEMANTICS OF VOILA

inserted) and append them to the existing misses (25). Then, we try to insert the
misses (30) and copy the keys (33) which might fail. Finally, we repeat the insertion
process until we found a bucket for every tuple.

5.3 Formal Semantics of VOILA

We formally define VOILA’s semantics bottom-up: We start with basic expressions,
afterward step-wise broaden the semantics to statements, operators, and query.

5.3.1 Expressions

In VOILA, expressions can have predicates attached. Predicates indicate which
values inside vectors are valid. In case, there is no predicate attached, we attach a
predicate that will return true for every value. We intend to only define the result
of an expression when the predicate is true (1). Otherwise, we define it as undefined
(⊥).

Predicates. To conveniently apply predicates to functions, we define ϕ as the
application of a function f to its arguments a1, a2, . . . in the presence of a predicate
p ∈ {0, 1}:

ϕ(p, f, a1, a2, . . .) :=

⎧⎨⎩f(a1, a2, . . .) if p = 1

⊥ otherwise

Element-wise Application. To apply regular functions onto vectors, we define
element-wise application (π). Let vectors be functions from an index set I to the
result set R (I → R). For a vector v⃗, we can define I = {1, 2, . . . , dim(v⃗)}. Let Ia⃗

denote the index set of vector a⃗. We define the trivial element-wise application (π′)
as:

π′(i, f, a1, a2, . . .) :=

⎧⎨⎩f(a1(i), a2(i), . . .) if c(i, a1, a2, . . .)

⊥ otherwise

with
c(i, a1, a2 . . .) :=

(︁
(a1(i) ̸= ⊥) ∧ (a2(i) ̸= ⊥) ∧ . . .

)︁
∧

(︁
(i ∈ Ia1) ∧ (i ∈ Ia2) ∧ . . .

)︁ .

The function c defines which elements of the vectors are valid. An element is valid
if is defined in terms of (a) ⊥ and (b) the index set. The resulting index set of π′

is the intersection of all input index sets: Iπ′ = Ia1 ∩ Ia2

We define the element-wise application (π) as the inverse transformation of vectors
to functions applied on π′.

91

5.3. FORMAL SEMANTICS OF VOILA

Expressions apply a function f to its arguments and a global state W . We define
the result of an expression η as the composition of predication (ϕ) and application
(π):

η(W, f, p⃗, a1⃗, a2⃗ . . .) := π(ϕ(f, W), p⃗, a1⃗, a2⃗, . . .)

Using η, we define the expressions in VOILA as the element-wise application of a
function f . Expressions that allow sequential access, read and scan, have both sim-
ilar semantics to gather with the difference that the indices are sequential starting
from a scalar offset (o). We transform expressions with sequential access into the
same shape as normal expressions in VOILA described by a function f . Therefore,
we add the identity vector id⃗ as an additional argument to π and, consequently,
f(a1, a2 . . .). We denote such modified functions as fseq(a1, a2, . . . , i) where a1, a2

are the arguments and i the i-th position of the identity vector.

Table 5.2 defines most expressions as such function f . To keep the notation con-
cise, we implicitly broadcast scalar expressions (ht, c, p) to a constant vector with
infinite dimension. The remaining expressions (read_pos, scan_pos and write_pos,
bucket_insert) can have side effects. Thus, we postpone their definition to the
next section by rewriting them into statements: Let e be such an expression and
x some unique identifier, then we rewrite e(a⃗1, a⃗2, . . .) into assign(x, e(a⃗1, a⃗2, . . .))
and reference x in the expression(s) referring to the result of e.

5.3.2 Statements

Side-Effects. Similar to low-level imperative languages, e.g. C, statements can
have side effects . To formally encapsulate side effects, we define a “world state”
W . Each statement S :: (W, A) → W has input arguments A and modifies W . A
chain of two statements S1, S2 would hand though the world state W : Wfinal =
S2(S1(Winit, A1), A2). By induction, we can construct chains of arbitrary length.

Global State. Our constructed world, or global state, W contains mappings for
variables (W.Vvar name), as well as mappings for data structures (W.Dstruct name).
Further, we define getters and setters: A getter returns the specified value, i.e.
get(w, m) := w.m. A setter "modifies" the global state W by creating a new state
W ′. W ′ := set(w, m, v) creates a copy of w, namely W ′, with w.m = v.

Variables. Statements allow assigning values to variables. Therefore, we extend W

with an associative set that maps variable names to values (W.V). Assignments can
update variables in W.V with values stemming from the evaluation of an expression,
which can read variables.

92

5.3. FORMAL SEMANTICS OF VOILA

Table 5.2: Expressions in VOILA defined as function f .

Operation Semantics
Comparison/arithmetic/logic
eq(x, y) f(W, x, y) = x = y
eq(x, y) f(W, x) = ¬(x)
add(x, y) f(W, x, y) = x + y
cast_i32(x) f(W, x) = x
hash(x) f(W, x) = hash(x)
...
Hash Table
bucket_lookup(ht, b) f(W, ht, b) = get(W, Dht;bucket[b])
bucket_next(ht, b) f(W, ht, b) = get(W, Dht;next[b])
Table/Array
gather(c, b) f(W, c, b) = get(W, Dc[b]).
read(c, p) fseq(W, c, p, i) = get(W, Dc[p + i]).
Data Inflow
scan_pos(t) read_pos(t)
scan(c, p) read(c, p)

Predicate
seltrue(x) f(W, x) = x
selvalid(x) f(W, x) ̸= ⊥
selunion(x, y) or(x, y)
...
Other
Variable v f(W, v) = get(W, Vv)
Constant c f(W, c) = bcast(c)

Element-wise Application. Similar to Expressions, we define the element-wise
application for statements. The difference is that statements and (rewritten) expres-
sions have side effects and, thus, we need to (a) carry the global state around and
(b) specify an evaluation order. Therefore, we define the element-wise application
until an index m as:

A′
m(W, s, i, p⃗, a1⃗, a2⃗, . . .) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
A′

m(W ′, s, i + 1, if i ≤ m

p⃗, a1⃗, a2⃗, . . .)

W ′ otherwise

with W ′ =

⎧⎨⎩s(W, i, a1,1⃗ , a2,1⃗ , . . .) if (p = 1) ∧ (i ≤ m)

W otherwise
.

Using A′
m, we define the element-wise application A as:

A(W, s, p, a1, a2, . . .) := A′
m(W, s, 1, p⃗, a1⃗, a2⃗, . . .)

93

5.3. FORMAL SEMANTICS OF VOILA

Table 5.3: Statements in VOILA. i is the index inside vectors, defined in Sec-
tion 5.3.2 (Element-wise Application).

Pattern Semantics
assign(W, v, e⃗) s(W, i, v, e⃗) = set

(︁
W, Vv, θ(W, e⃗)i

)︁
Writers
write(c, epos, eval⃗) scatter(c, bcast(epos), eval⃗)
scatter(c, eidx⃗ , eval⃗) s(W, i, c, eidx⃗ , eval⃗) = set

(︁
W,

Dc

[︁
θ(W, eidx⃗)[i]

]︁
, θ(W, eval⃗)[i]

)︁
Aggregates
Let f be an aggregation function, e.g. fsum(eold, eval) := eold + eval

aggr_∗(c, eidx⃗ , eval⃗) s(W, i, c, eidx⃗ , eval⃗) = W ′ with
k = θ(W, eidx⃗)[i]
W ′ = set(W, Dc[k],

f
(︁
get(W, Dc[k]), θ(W, eval⃗)

)︁
(Rewritten) Position Allocators
For ∗_pos ∈ {read_pos, scan_pos, write_pos}
assign

(︁
W, v, W ′ = set(T, Vv, θ(W, r)) with

∗_pos(t)
)︁

r = get(W, Dt;∗_pos)
T = set

(︂
W, Dt;∗_pos, θ

(︁
W, add(r, dim(r))

)︁)︂

with m = min
{︁

dim(p⃗), dim(a1⃗), dim(a2⃗), . . .
}︁

, p⃗ = θ(W, p), a1⃗ = θ(W, a1), a2⃗ =
θ(W, a2) ... Using A, we can define statements as the application of a function s

onto each element. With the element-wise application and the following helpers,
most statements can be defined as in Table 5.3:

• θ(W, e) evaluates an expression e and returns its value.
• C[i] accesses a value inside C at position i. This makes C a mapping from i

to values.
• e⃗ = bcast(d) broadcasts d to all entries of e⃗ (∀iei⃗ = d).

bucket_insert tries to create k = dim(b) buckets. Collisions might happen (conflict-
ing indices inside a vector). Therefore, the result can be (a) a successful insertion
of the bucket or (b) a failure to insert. In the latter case, the insertion procedure
will have to be repeated. We combined both and return a bucket index, or ⊥ for
failure. We can define assign(W, v, bucket_insert(ht, b)) as:

s(W, i, ht, b) =

⎧⎨⎩set(W3, Vv, r) if conflict(b⃗, i) = 0

set(W, Vv, ⊥) otherwise

with:

• W1 := set
(︁
W, Dht;next[b], get(W, Dht;bucket[b])

)︁
,

94

5.3. FORMAL SEMANTICS OF VOILA

• (W2, r) := allocate(W1) allocates a position in the hash table and returns new
state W2 and position r.

• W3 := set(W2, Dht;bucket[b], r)

conflict(b⃗, i) :=

⎧⎨⎩
⃓⃓⃓
{b⃗[i]} ∩

{︁
b⃗[1], . . . , b⃗[i − 1]

}︁⃓⃓⃓
if i > 1

0 otherwise

LOOP repeats a certain scope until a fixed-point is reached, i.e. condition is not
satisfied. Let W be the global state and S be a statement, then we define LOOP as:

L(W, S, P) =

⎧⎨⎩L(S(W), S, P) if count(θ(W, P), 1) > 0

W otherwise

5.3.3 Operators

In VOILA an operator is described by a function op(input). Let the current pipeline
be P , |P | the number of operators in P and Pi the specific function of operator i.

EMIT. The EMIT statement transports tuples from the current operator to the next
operator, in the pipeline, or outputs tuples, last operator in the last pipeline, to the
user. With knowledge of the current pipeline P , the following operator is known
and static (will not change). This allows us to rewrite the VOILA program into a
program without EMIT To handle EMIT, we fully transform the VOILA program.

For every operator o (with operator function Po(W, x), with x being its input, or
for scans), we replace every occurrence of EMIT(x) (typically only one), with Po+1(x)
when o+1 < |P | (otherwise it would print tuples to the user). We repeat this process
until no EMIT can be replaced. As a consequence, there will only be one remaining
operator function (every operator has been inlined into the scan operator P1) and
the remaining EMITs add tuples to the result R. We define the result R as a list,
part of the global state W , and let append(L, x) a function that appends a value x

at the end of the list L. Like regular statements, we define (the remaining) EMIT in
terms of W as:

W ′ =

⎧⎨⎩set(W, R, append(get(W, R), x)) if p = 1

W otherwise

Execution & Termination. With the above toolkit, we can answer a query Q.
Let the query consist of multiple pipelines Q1, Q2, We construct an initial

95

5.4. COMMON RELATIONAL OPERATORS IN VOILA

W0 with empty result R, empty set of variables V and set of data structures D

consisting of base tables. Using the initial state W0, we can evaluate each pipeline
consecutively, resulting in a new state (a W ′) and feed W ′ into the next pipeline, and
so on. We evaluate a pipeline using eval(W, Qn) := eval(W, Qn;1) which evaluates
the first operator function (Qn;1, the P1 of a Qn) of the pipeline until the end of the
operator function is reached. We repeat this process until all pipelines have been
evaluated. Afterward, the final result of the query is stored as W.R, in the final
state W .

5.4 Common Relational Operators in VOILA

We translate physical plan operators (such as hash join, hash group-by) into VOILA.
In this section, we show how commonly used operators can be implemented. In
particular, we focus on scan, hash group-by, hash join and filter.

5.4.1 Scan

The scan operator allocates ranges (morsels) to be processed (scan_morsel) dynam-
ically. In each such range it iterates over the tuple in the range (scan_pos), scans
(scan) them and emits the constructed tuple:

Scan () {
morsel = scan_morsel (BASE_TABLE1)
| valid_morsel = selvalid (morsel)

LOOP | valid_morsel {
// iterate over morsel
pos = scan_pos (morsel)
| valid_pos = selvalid (pos)

LOOP | valid_pos {
k1 = scan(BASE_TABLE .k1 , pos)
k2 = scan(BASE_TABLE .k2 , pos)
EMIT (k1 , k2)

// goto next position in morsel
pos = scan_pos (morsel)
| valid_pos = selvalid (pos)

}

// go to next morsel
morsel = scan_morsel (BASE_TABLE1)
| valid_morsel = selvalid (morsel)

} }

96

5.4. COMMON RELATIONAL OPERATORS IN VOILA

5.4.2 Hash Group-By

The group-by consists of two phases: First it builds the hash table with the indi-
vidual groups, potentially computes aggregates and, afterward, the hash table will
be scanned. We logically separate these phases into two LOLEPOPs: GroupBy and
GroupByScan.

GroupBy computes the index of unique each group in the hash table. It can be
implemented as illustrated in Listing 5.1.

The unique index, from GroupByScan (stored in T[0]), is then used to calculate the
aggregates for each group.

LOCAL HASHTABLE ht(key KEY , sum_a VALUE , cnt_a VALUE)

GroupByScan () {
morsel = read_morsel (ht)
| valid_morsel = selvalid (morsel)

LOOP | valid_morsel {
// consume morsel
pos = read_pos (ht)
| valid_pos = selvalid (morsel)

LOOP | valid_pos {
// read data from value space of HT
c = read(ht.cnt_a , pos)

// prevent output of empty groups
exists_pred = gt(c, 0)
| exists = seltrue (exists_pred)

s = read(ht.sum_a , pos | exists)
avg1 = div(s, c)

// get key(s)
key = read(ht.key , pos | exists)

// produce output
EMIT (key , avg1) | exists

// get next read position
pos = read_pos (morsel)
| valid_pos = selvalid (pos)

}

// next morsel
morsel = read_morsel (ht)
| valid_morsel = selvalid (morsel)

} }

97

5.4. COMMON RELATIONAL OPERATORS IN VOILA

5.4.3 Hash Join

The hash join implementation consists of three phases: (1) Materializing the inner
(build) relation (HashJoinMaterialize), (2) building the bucket chains (HashJoin-
Build) and (3) probing the outer relation and reconstructing the output tuples
(HashJoinProbeFk1). Note that HashJoinBuild has a hard-coded implementation.

During the hash join’s build phase, we first materialize the inner relation:

SHARED HASHTABLE ht(k1 KEY , k2 KEY , hash HASH ,
c1 VALUE , ...)

HashJoinMaterialize (T) {
// allocate space to materialize |T[0]| tuples
pos = write_pos (ht , T[0])
h = hash(T[0])

// write columns to thread - local space
write (ht.k1 , pos , T[0])
write (ht.k2 , pos , T[1])
write (ht.c1 , pos , T[2])
write (ht.hash , pos , h)
// ...

}

Once the hash table is built, we have a different pipeline that allows to probe tuples
through it. The following code shows an optimized LOLEPOP for probing in case
of a foreign-key join (≤ 1 matches):

SHARED HASHTABLE ht(key KEY , payl VALUE)

HashJoinProbeFk1 (T) {
// find initial buckets
h = hash(T.key)
bucket = bucket_lookup (ht , h)
empty = eq(bucket , 0)
| active = selfalse (empty)

// iterate through bucket chain
LOOP | active {

lookup = gather (ht.key , bucket | active)
match = eq(lookup , T.key)
|hit = seltrue (match)

payl = gather (ht.payl , bucket | hit)
EMIT (T ++ payl) |hit

| active = selfalse (match) // omit for non -fk1 join
bucket = bucket_next (ht , bucket | active)
empty = eq(bucket , 0)
| active = selfalse (empty)

} }

98

5.5. MULTI-CORE PARALLELISM IN VOILA

Note that HashJoinProbeFk1 can also be generalized by omitting the line:
| active = selfalse (match)

5.4.4 Filter

Filters, or selections, are trivial to implement in VOILA:
Filter (T) {

|p = seltrue (predicate)
EMIT T |p

}

5.5 Multi-core Parallelism in VOILA

To take advantage of modern multi/many-core hardware, VOILA must be able to
efficiently support intra-query parallelism. Therefore, we extended VOILA, with
only a few changes, to support such parallelism.

5.5.1 Morsel-driven Parallelism

Morsel-driven parallelism [LBKN14] parallelizes each pipeline using a task-based
model together with operators aware of parallelism. First, the query is split into
pipelines, query fragments consisting of a chain of operators from a data source to
a data sink. Afterward, each pipeline is parallelized.

In the data source, the input is dynamically partitioned into chunks, so-called
morsels. Afterward, the pipeline is executed on that morsel. Eventually, a morsel
will reach the end of the pipeline (typically a materializing operator). The behavior
depends on the operator, in the following we explain hash group-by and hash join.

Hash Group-By. The parallel hash group-by works in three stages: First, each
thread will pre-aggregate locally using a cache-resident hash table. Afterward, the
hash table is (hash) partitioned. In the last step, each thread will scan its corre-
sponding partitions to group them again thread-locally. Eventually, each thread
holds local hash tables partitioned by the key. Pre-aggregation typically eliminates
heavy hitters and reduces the amount of data that, later, needs to be shuffled/sent
across cores, whereas, partitioned group-by allows the handling of many groups
efficiently.

Hash Join. Leis et al. [LBKN14] describe the parallel hash join as a three-stage
operator: First, each thread materializes the inner/build relation in a thread-local

99

5.6. CONCLUSION

space. Second, every thread will scan the materialized relation, starting with its
local space and build the global shared hash table. In the third and last step, the
shared hash table is probed by concurrently running threads.

Pros and Cons. It is resilient to skew, as well as, elastic by partitioning data
sources (tables, hash tables) into small chunks and scheduling them in a balanced
fashion. Through combining task-driven scheduling and operators optimized for
parallelism, it achieves state-of-the-art scalability [LBKN14].

However, integrating morsel-driven parallelism into an existing system requires sig-
nificant change. We show that integrating it into VOILA is relatively easy and
straight-forward.

5.5.2 Integration

To integrate morsel-driven parallelism into VOILA, we (a) extended the data struc-
tures, as well as, (b) allowed morsel-based access for scan, read and write.

Data Structures. To support the variety of tables and hash tables required by
morsel-driven parallelism we extended our table data structure by (a) a fully thread-
local (hash) tables (for final group-by), (b) thread-local hash tables that can be
flushed into partitions (for pre-aggregation) and (c) shared (hash) tables (for hash
join)

Morsel-based Access. During scans or table reads, each thread will call the
operations scan_pos and read_pos, which will return the position of the next tuple.
We extended that interface by introducing two new operations scan_morsel and
read_morsel which retrieve the next morsel. The, afterward, following operations
scan/read_pos will then only return positions to tuples inside the given morsel.

5.6 Conclusion

VOILA provides an extensible representation where each operation operates on data
vectors. Due to its “medium” level (neither fully low-, nor fully high-level either)
nature, VOILA avoids issues other languages run into, most notably:

• The removal of complex intermediates (i.e. Deforestation [Wad88]). VOILA
avoids such complex intermediates.

• The representation of data-parallelism (e.g. required from generation of SIMD
code). By using vectors to represent data, in VOILA, the whole program is

100

5.6. CONCLUSION

data-parallel by design. While most operations in VOILA are data-parallel
(e.g. bucket_lookup, add), not all operations have to be (e.g. seltrue). In
VOILA, the presence of sequential (non-data-parallel) operations does not
preclude other operations to run in a data-parallel fashion.

Besides its features on the language-level, VOILA is powerful enough to encode
common operators used for query evaluation (Section 5.5.4, most notably join and
group-by). Additionally, VOILA can easily be extended to support efficient paral-
lelization (Section 5.5.5).

The following chapter will reveal the flexibility of VOILA by synthesizing different
high-performance query execution paradigms from a single description (in VOILA).

101

5.6. CONCLUSION

102

CHAPTER 6

Synthesizing Engines from VOILA

Insanity is doing the same thing,
over and over again, but expecting
different results

Narcotics Anonymous

6.1 Introduction

The previous chapter discussed VOILA, a domain-specific language that describes
commonly used query operators. This chapter discusses synthesizing state-of-the-
art implementations from VOILA, as illustrated in Figure 6-1. We intend to gener-
ate a plethora of such implementations to gather more knowledge about the design
space.

We discuss two kinds of translation methods (a) direct back-ends which directly
translate VOILA into data-centric and vectorized code and (b) FUJI which decom-
poses code generation into different components that can be arbitrarily re-composed,
and translated into an intermediate language (CLite) first. Furthermore, FUJI can
mix different implementations within a pipeline.

103

6.1. INTRODUCTION

Q
uery

O
perator

Library

...

B
uild

Scan

Probe
B

uild

...

...

H
ashJoin

H
ashG

roupB
y

...

B
ack-E

nds

D
irect

Vector.
D

ata-
Volcano

C
entric

FU
JI.M

ixes
of:

C
om

putation

Vector.
Scalar

AV
X

C
ontrol

G
oto

FSM
...

...

Prefetch

H
ashG

roupB
y

H
ashJoin

Select

Lineitem
O

rders

Select

V
O

ILA
M

achine

|pred
=

seltrue(T.A
<

42)
EMIT

(T.A)
|pred

Select(T
):

pos
=

scan_pos(morsel)
|valid

=
selvalid(pos)

LOOP
|valid:

a
=

scan(orders.A,
pos)

EMIT
(a)

pos
=

scan_pos(morsel)
|valid

=
selvalid(pos)

O
rders():

h
=

hash(T.A)
write(HT1._hash,

h)
write(HT1.A,

T.A)

H
ashJoinB

uild(T
):

Pipeline
1

H
ashG

roupB
yB

uild

H
ashJoinProbe

Select

Lineitem

Pipeline
2

H
ashG

roupB
yScan

Pipeline
3

C
ode

3:
Scalar

2:
Vector.

Payload:
1:

Vector.
Scalar

H
ashG

roupB
y

H
ashJoin

Select

Lineitem
O

rders

Select

+
Prefetch

+
G

oto+
G

oto

+
FSM

...

Figure
6-1:

A
rchitecture

ofour
V

O
ILA

-based
synthesis

fram
ew

ork

104

6.2. DIRECT SYNTHESIZER BACK-ENDS

Translate(Operator o, Input T):
1. Loops: LOOP |p ... → while (p) { ... }
2. Remove predicates:

• r = x |p → if (p) { r = x }
• p = seltrue(x) → p = x
• p = selfalse(x) → p = !x

3. Implement operations:
• r = hash(x) → r = HASH(x)
• r = read(col, idx) → r = col[idx]
• scatter(col, idx, val) → col[idx] = val
• EMIT x → Translate(o + 1, x)
• ...

Figure 6-2: Translation of statements/expression from VOILA to data-centric pro-
gram. Order of application matters.

6.2 Direct Synthesizer Back-ends

Using descriptions in VOILA, we can synthesize code that uses different execution
styles. We created backends that generate the state-of-the-art paradigms in C++:
data-centric as used in HyPer [Neu11], and iterator-based vectorized [BZN05] code,
as used in Vectorwise.

6.2.1 Data-Centric Program

We first re-cap data-centric compilation and afterward describe how to synthesize
data-centric code.

Data-Centric Compilation, first, splits query plans into pipelines. Pipelines start
from scans (base table, group-by etc.) and end in a materializing operator. For each
pipeline, data-centric compilation fuses all operators into one loop while, typically,
generating scalar code for the operator’s body. Thus, we focus on synthesizing
scalar code, but our synthesis strategy is not limited to it.

Synthesis. Similar to the original approach by Neumann [Neu11], we first split
the query plan into pipelines and inline all operators in one pipeline into one loop.
This gives us data-centric pipelines in VOILA, which we then lower to executable
code. During the translation, we assume a vector size of 1 (i.e. scalar) and directly
expand operations in VOILA using the set of rules listed in Figure 6-2.

6.2.2 Iterator-based Vectorized Program

Alternatively, one can also translate VOILA into an iterator-based and vectorized
program. Currently, our framework can only synthesize unary operators and, thus,
we split binary operators into pipelines as for data-centric code.

105

6.3. FUJI – A FLEXIBLE BACK-END

Iterator-based Operators. It is a traditional approach to implement physical
operators as iterators by providing an open-next-close interface. Using this inter-
face, operators pull the next tuple from the child operator(s) by calling next. This
both reduces the size of intermediates materialized in memory (one tuple) as cache-
efficiency (tuple is produced and immediately consumed by the next operator).

Vectorized Interpretation. Traditionally, the iterator-based model only returns
one tuple at a time. It has been shown that this leads to high interpretation over-
head [BZN05]. As a mitigation, the iterator-model can be extended to return multi-
ple tuples. To further cut down interpretation costs, basic expressions also need to
operate on multiple tuples. This is known as “vectorized interpretation” [BZN05].

Synthesis. To generate an iterator-based vectorized program, we synthesize an
operator implementation that implements the open-next-close interface. Inside the
operator we need to construct expressions (open), evaluate them (next), deallocate
resources (close), as well as, maintain the operator’s state. Since we keep the
operator context for each operator, we macro-expand a basic operator template.

For each expression in VOILA, we need to generate code that constructs an ex-
pression (Expr a_plus_b("add", a, b);). At a later point, the top-most expression
will trigger the recursive evaluation of its input expressions (lazy evaluation). For
statements, we generate specialized code:

• EMIT is translated into code that moves tuples (expressions) into the operator’s
output and returns tuples.

• LOOP translates into a loop, including evaluating the loop predicate. It can
happen that loops refer to in-flight, not yet evaluated, expressions either from
out-side the loop, or from a previous iteration. In such cases, we need to
evaluate these in-flight expressions.

• All remaining statements enforce evaluation of their input expressions.

For each operator, we build expression trees which are evaluated, either, via state-
ments, or when the result of the operator is requested (next).

6.3 FUJI – A flexible back-end

Our two direct backends can generate executable code for queries, using operators
described in VOILA according to two entirely different state-of-the-art flavors: data-
centric and vectorized. However, it is not limited to these two. Therefore, we
designed a third back-end: Flexible Unified JIT Infrastructure (FUJI), which is

106

6.3. FUJI – A FLEXIBLE BACK-END

Table 6.1: Known points in the FUJI’s design space

Flavor Computation Control Prefetch Buffering
Hyper [Neu11] Scalar Goto ✗ ✗
X100 [BZN05] Vec. Primitive Goto ✗ ✗
AMAC [KFG15] Scalar Conc. FSMs ✓ ✗
ROF [MMP17] Scalar Goto ✓ ✓
IMV [FZW19] SIMD Conc. FSMs ✓ ✓

more generic. It makes code generation (1) more flexible and (2) easier to extend
and debug. It (a) decomposes code generation into components, (b) allows freely
mixing them, and (c) is logically splitting code generation into different modules
serving different purposes.

6.3.1 Component-based Flavor-Generation

We decompose code generation into basic components: Computation, Prefetching,
Control and Buffering.

Computation. The computation component translates expression trees into scalar
operations (e.g. Hyper), SIMD operations or calls to vectorized primitives (functions
that process column chunks in a tight loop).

Prefetching. Recent work has shown that software prefetching can significantly
improve performance [KFG15, MMP17, FZW19] and therefore should be a part of
modern query engines.

Control. The Control component decides how EMIT and LOOP statements are trans-
lated. This can be a goto-based program or multiple finite state machines (FSMs).
Multiple FSMs have the advantage that each FSM can run concurrently and allow
overlapping prefetching with other operations, e.g. one FSM issues the memory
loads via prefetch instructions, while waiting the other FSMs can proceed.

Buffering. Selective operators (e.g. filters) or predicates can remove tuples from
the flow. However, to achieve full utilization of SIMD lanes (or ALU in general) it
is, in some cases, advisable to physically eliminate filtered-out tuples (i.e. typically
materializing a chunk of the relation). Typically, buffering becomes pricier with
more columns, but leads to gains at subsequent operators/operations.

This decomposition covers the state-of-the-art (Table 6.1) and the space in between.

107

6.3. FUJI – A FLEXIBLE BACK-END

6.3.2 Flexible Unified JIT Infrastructure (FUJI)

Typically, code generators tend to be giant monoliths. For example, the early code
generator of Hyper was about 10K lines of code [Neu11]. To increase flexibility and
extensibility, we split the logic of our FUJI back-end into multiple modules: Generic
Codegen, Target Codegen and CLite.

Generic Codegen. The generic code generator generates CLite code for operators,
statements, buffering logic (buffer refill and flushing), variables, position allocators.
The remaining expressions are handled by the specific target code generators which,
then, synthesize optimized code.

Target Codegen. The target-specific code generator generates specific implemen-
tations for expressions, buffering of intermediates and prefetching. We implemented
3 targets: scalar, vector and avx512. The scalar target generates data-centric
code [Neu11] similar to Section 6.2.1. The vector target generates calls to vec-
torized primitives, which is an alternative implementation of vectorized execution,
compared to iterator-based vectorized program (Section 6.2.2). In addition FUJI,
currently, provides an avx512 target, which processes blocks of 8 values-at-a-time
and, if possible, uses AVX intrisincs. Note, not all operators are (a) possible using
only the AVX instruction sets (e.g. bucket_insert), nor (b) benefit from it (e.g.
aggregations or sub-word gathers). Selective processing is implemented using AVX-
512 bit-masks. If the usage of AVX is not possible, for each of the 8 values, we
check the mask and generate scalar code.

CLite. Both, generic and target code generators, generate CLite-code, our second
domain-specific language. CLite is a simplified version of C without infix operators,
macros, loops (go-to instead). It constitutes a lightweight abstraction that (a) pro-
vides a convenient interface to construct programs, (b) allows specific optimizations
and (c) helps to synthesize different control-flow techniques. From the program in
CLite, we currently generate a C++ program, but plan to compile to LLVM IR or
machine code directly.

Synthesizing Control Flow. When synthesizing code, we differentiate between
two control-flow strategies: (a) simple goto-based programs and (b) finite state ma-
chines (FSMs). Both can easily be synthesized from CLite which can be seen in
Figure 6-3: For a goto-based program, CLite blocks are lowered into labels (LABEL:

BODY) and branches into go-to statements (goto NEXT;). To generate an FSM, CLite
blocks are lowered into an FSM state (case STATE_ID: BODY) and branches sched-
ule the next states (state.state = NEXT; break;). The generated code is, then,

108

6.3. FUJI – A FLEXIBLE BACK-END

Fragment f;
Block l1(f), l2(f);
Builder b(l1);

Var x = f.var("int", "x");
Var y = f.var("int", "y");
Expr c = f. literal (42);
b. assign (y,

b.func("+", b.ref(x), c));
b. effect (

b.func(" print ", b.ref(y)));
b. branch (l2);

(a) Simple CLite example

int x,y;

{
l1:

y = x + 42;
print (y);
goto l2;

l2:
...

}

(b) Goto Program

int state =1,x,y;

while (1) {

switch (state) {
case 1:

y = x + 42;
print (y);
state = 2; break ;

case 2:
...

} }

(c) Finite State Machine

struct {int state =1,x,y;} S[N];
unsigned lwt = 0;
while (1) {

auto & s = S[(lwt ++) % N];
switch (s. state) {
case 1:

s.y = s.x + 42;
print (s.y);
s. state = 2; break ;

case 2:
...

} }

(d) N Concurrent FSMs

Figure 6-3: Synthesizing Control-Flow from CLite.

wrapped into a loop and switch statement. To generate concurrent FSMs, we ex-
tend the FSM-code by wrapping local variables into a per-FSM state (S), and adding
scheduling logic (lwt).

Minimizing State S. Especially, the performance of concurrent FSMs is very
sensitive to the number of variables stored in the per-FSM state S, as additional
overheads occur when variables are accessed: (a) indirection overhead because,
instead of in CPU registers, variables are stored inside an array of struct and
(b) additional cache pressure with an increasing size of S. Therefore, we added
an optimization pass, that promotes CLite variables to regular variables (can be
stored in regular CPU registers). This is possible, whenever variables are only
read/written inside the same block, and, obviously, for constants. This optimization
pass minimizes indirections as well as eases cache pressure.

6.3.3 Mixing Flavors (BLEND)

To finally generate an astronomical number of engines, the FUJI back-end should
allow combining different flavors. Therefore, we extended VOILA with operations
that allow changing the generated flavor, and extended FUJI with the ability to
generate transitions between flavors.

109

6.3. FUJI – A FLEXIBLE BACK-END

One Flavor per Pipeline. One of the easiest ways of mixing flavors in a query
is to choose a different flavor per pipeline. In FUJI, this is trivial because it just
means instantiating a different code generator for each pipeline.

Mixing Flavors in a Pipeline. A more flexible method is to combine multiple
flavors inside a pipeline, what we call blending.

We extended VOILA with BLEND, a statement which defines a flavor for a scope (sub-
program with its statements and in-flight variables). Then, we can create different
blends by setting a default/main flavor and introducing BLENDs which define flavors
for program fragments. Note that this allows recursive stacking of BLENDs.

Translating BLEND. A BLEND defines a child flavor within a parent flavor. When
translating a BLEND, we compose a new code generator (as described in Section 6.3.1)
and buffer in-flight data during the transition from parent to child flavor, and back.
Buffering can be done in many ways. One can imagine buffering columnar, row-
wise buffers or mixes. To allow different buffering implementations, we construct
an extremely versatile, yet simple, interface: (1) buffer_read_pos/buffer_write_pos

allocate slots for reading/writing, (2) buffer_read/buffer_write read/write data
from/to the buffer, and (3) buffer_read_commit/buffer_write_commit commit used
slots. For example, to write a row to the buffer, we first allocate a destination slot
using p = buffer_write_pos. Then, we write each attribute/cell a to the slot p via
buffer_write(p, a). Afterward, we complete the write via buffer_write_commit(p).
As this interface allows many possible buffer implementations, FUJI leaves specific
implementation choices to the code generators.

Using the buffering interface, we implement BLEND. A BLEND introduces two buffers:
an input and an output buffer. Data flows from a source into the input buffer.
When the input buffer is full, we read values from the input buffer, and run the
code inside BLEND (generated in a different flavor). This is producing output values
which are then written into the output buffer. When the output buffer is full,
we read values from the output buffer, which then flow towards the sink. We use
source and sink rather generically: In the trivial case, one BLEND inside a pipeline,
the source refers to the VOILA code before the BLEND whereas the sink is the code
after the BLEND. However, when nesting or chaining BLENDs, source/sink can as well
read/write another BLEND’s buffer.

Buffering Design Choices. To minimize allocation overheads, we use fixed-sized
ring buffers. Typically, when wrapping around, vectorized writes can become non-
contiguous. In that case, we leave empty space at the end, wrap around and write

110

6.4. EVALUATION

Table 6.2: Highly diverse runtimes. SF 100. 24 threads.

#BLENDs #Queries Runtime (s)
Min Q0.25 Median Q0.75 Max

5 1 7.22 7.22 7.22 7.22 7.22
6 11 3.87 6.54 8.03 9.86 17.85
7 85 5.18 7.20 8.16 10.14 311.77
8 449 4.81 8.30 10.06 13.32 353.42
9 1511 4.70 9.05 10.98 15.51 318.32

10 9216 3.90 9.75 12.19 17.21 347.92
Total 11273 3.87 9.63 11.92 16.85 353.42

contiguously. The buffer size impacts performance significantly. A buffer that is
too small will be flushed too often, incurring branch miss-predictions. If the buffer
is too large, additional cache misses can have a negative impact. We differentiate
between the physical buffer size and a high watermark, the effective size. The buffer
size ensures the writes fit, whereas the high watermark controls buffer performance.
We use high watermark of max(2*n, 2k) and a size of max(2*s*n, 64k) with n being
the input vector size (e.g. 8 for AVX-512) and s the number of concurrent FSMs.

6.4 Evaluation

We implemented the VOILA compiler with the two direct back-ends and FUJI in
C++. All queries use the TPC-H dataset with varying scale factors (SF). The
experiments were performed on a dual-socket Intel Xeon Gold 6126 with 24 SMT
cores (12 physical cores) and 19.25 MB L3 cache each. The system is equipped with
384 GB of main memory.

6.4.1 Design Space Exploration

We explored the design space of TPC-H Q9 span through mixing different flavors
per pipeline and BLENDing different flavors inside the same pipeline. Instead of
allowing fully flexible BLEND operations, we limited them to specific points: (a) hash
join key check, (b) hash join payload gather, (c) projections/arithmetic and (d)
filters. Further, we limited base flavors to the pipelines that contribute > 15% to
total performance. We further restricted the space by limiting essential parameters:
computation type to the basic types (scalar, avx512 and vector), prefetching to a
boolean (0, 1) and the number of concurrent state machines to reasonable small
values (1, 2, 4, 8). Since Q9 the design space is too large for full exploration, we
sampled the design space. We synthesized roughly 10,000 queries from VOILA
using uniformly random combinations of base flavors (data-centric, prefetching,

111

6.4. EVALUATION

250 500 750 1000 1250 1500
Runtime (ms)

0

10

20

30

40

Co
un

t

avx512
scalar
v(1024)
v(2048)
v(256)
v(512)

(a) Computation Type

250 500 750 1000 1250 1500
Runtime (ms)

0

10

20

30

40

Co
un

t

1
2
4
8
16
32

(b) Concurrent State Machines

250 500 750 1000 1250 1500
Runtime (ms)

0

10

20

30

40

Co
un

t

0
1
2
3
4

(c) Prefetching

Figure 6-4: Q1: Breakdown of the same histogram into computation type, prefetch-
ing and concurrent state machines. Many flavors are far from optimal. No benefit
from prefetching. 24 threads, SF 100

state machines etc.) as well as mixes of them, inside the same pipeline and between
pipelines. This covers roughly 4 ∗ 10−4% of the described space. The runtimes are
summarized in Table 6.2.

Our uniform space sample frequently contains many BLENDs. Compared to the best
runtime found (3.87), many queries perform worse (≥ 2× higher median). There
is a tail of runtimes > 4× slower than the best time and extreme outliers that are
≈ 100× slower. With an increasing amount of BLENDs (mixes) the space increases
exponentially. Due to uniform sampling, we obtained more samples. Further, there
is a tendency that more BLENDs lead to higher runtime (increasing median, increasing
25- and 75-percentile Q0.75). This can be explained by the increasing buffering
effort per BLEND. Indicating that further methods to reduce buffering overhead are
required. Besides that tendency, there are still positive outliers, i.e. using 10 BLEND

operations the minimum runtime is competitive to the best runtime using 5 mixes.

6.4.2 Impact of Components on Runtimes

Given a specific query, we investigate the impact of specific flavors and their com-
ponents onto the total runtime. Therefore, we generated roughly 150 base flavors

112

6.4. EVALUATION

2000 3000 4000 5000
Runtime (ms)

0.0

2.5

5.0

7.5

10.0

12.5
Co

un
t

avx512
scalar
v(1024)
v(2048)
v(256)
v(512)

(a) Computation Type

2000 3000 4000 5000
Runtime (ms)

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

1
2
4
8
16
32

(b) Concurrent State Machines

2000 3000 4000 5000
Runtime (ms)

0.0

2.5

5.0

7.5

10.0

12.5

Co
un

t

0
1
2
3
4

(c) Prefetching

Figure 6-5: Q9: Breakdown of the same histogram into computation type, prefetch-
ing and concurrent state machines. Runtimes vary. scalar flavors tend to lead to
worse performance. 24 threads, SF 100

(combinations of paradigms, prefetching and concurrent state machines) and ran
the compiled query. The option we call prefetching encodes different prefetching
localities as follows: 0 means no prefetching, 1 locality 0 (prefetch into all cache-
levels up to L1), 2 locality 1 (prefetch up to L2), 3 locality 2 (prefetch into L3), 4

non-temporal (short-term/evict soon) [pre20]. The precise meaning of the locality
hints depends on the hardware. In particular, we analyze the impact of FUJI’s
components on two queries: TPC-H Q1 and Q9.

Q1. The results for Q1 are visualized in Figure 6-4. On first sight the plot re-
veals that most flavors are suboptimal, but outliers, positive as well as negative,
exist. The best flavors are roughly 3× better than average. These are based on
scalar processing and do not use concurrent state machines. There is no clear ben-
efit of prefetching as Q1 fits into cache, but incurs no significant overhead either.
Vectorized (vector flavors tend to perform worse than scalar and avx512 due to
(a) materialization overhead (reading/writing vectors) and (b) in-efficient access
to row-wise data when updating the aggregates. Further overhead is introduced by
adding concurrent state machines, eventually leading to the worst flavors up to 50%
worse than average. The performance of avx512 is in between scalar and vector.

113

6.4. EVALUATION

Table 6.3: Competitive performance. Runtimes of flavors generated from VOILA
are comparable with recent handwritten implementations. Runtimes in s.

Flavor Q1 Q3 Q6 Q9
SF 10
Typer [KLK+18] 0.5 1.1 0.2 3.1
Direct Hyper 0.6 (0.9×) 1.2 (0.9×) 0.3 (0.9×) 3.1 (1.0×)
FUJI Scalar 0.5 (1.1×) 1.2 (0.9×) 0.2 (1.3×) 3.1 (1.0×)
Tectorwise [KLK+18] 1.0 0.7 0.2 1.6
Direct Vector 1.0 (1.0×) 0.8 (0.8×) 0.2 (1.1×) 2.0 (0.8×)
FUJI Vector 1.0 (1.0×) 0.7 (0.9×) 0.3 (0.7×) 1.8 (0.9×)
SF 100
Typer [KLK+18] 5.5 13.3 1.8 40.9
Direct Hyper 5.9 (0.9×) 12.2 (1.1×) 2.8 (0.6×) 31.9 (1.3×)
FUJI Scalar 6.0 (0.9×) 11.5 (1.2×) 1.8 (1.0×) 32.7 (1.2×)
Tectorwise [KLK+18] 9.2 8.0 1.7 21.2
Direct Vector 10.6 (0.9×) 7.6 (1.1×) 2.3 (0.7×) 17.7 (1.2×)
FUJI Vector 10.4 (0.9×) 6.7 (1.2×) 3.6 (0.5×) 16.0 (1.3×)

Q9 paints a different picture, as Figure 6-5 shows. In general, block-based flavors
(avx512, vector) tend to outperform scalar. The best flavors are vectorized ones,
with ≤ 8 concurrent state machines and prefetching. Unlike Q1, we observed benefit
from using concurrent state machines and prefetching. Similar to Q1, avx512 tends
to be in the middle between vector and scalar.

Summary. From both queries, it can be said that scalar flavors outperform in
simple aggregation queries. vectorized flavors shine in complex join queries. Block-
based flavors (avx512) are the “safe” choice that does not perform best, but does
not lose badly either.

6.4.3 VOILA vs. Hand-Optimized Code

We compare the runtime of VOILA-synthesized queries to state-of-the-art para-
digms (a) data-centric compilation and (b) vectorized execution. As a baseline, we
used the handwritten and optimized implementations by Kersten et al. [KLK+18].
Kersten et al. have shown that their implementations behave similar to the original
systems Hyper and Vectorwise. We synthesized code for the basic data-centric and
vectorized flavors (no prefetching, only one state-machine/goto-based) (a) (scalar,

1, 0), (b) (vector(1024), 1, 0), (c) using the direct Hyper back-end and (d) using
the Iterator-based vectorized back-end. Table 6.3 shows our results.

Besides the vectorized Q6, we observed similar performance over all queries in a
range of ±30%.

114

6.4. EVALUATION

Table 6.4: VOILA can compete with hand-optimized prefetching, with further op-
timizations. Time in ms.

Name Time Speedup over
FUJI (avx512, 8, 1)

FUJI (avx512, 8, 1) 1358
Interleaved Multi-Vector. (IMV) [FZW19] 1297 1.1 ×
-Indirections 912 1.5 ×
-HyperBuild 825 1.6 ×
-NoBuffering 800 1.7 ×
Relaxed Operator Fusion (ROF) [MMP17] 1141 1.2 ×

Vectorized Q6. Q6 is slower because our synthesized code diverges from the
Tectorwise implementation. Our implementation, first, computes all predicates
and, afterward, builds the selection vector from the conjunction of the predicates.
For very selective queries, Q6 in particular, this introduces overhead for eliminated
rows. Tectorwise builds a selection vector for every predicate and, therefore, can
avoid this additional computational effort. Therefore, we modified the plan to build
the selection vector for every predicate, similar to Tectorwise. With the modified
plan, our FUJI-generated vectorized Q6, runs in 1.6s and performs roughly on par
with Tectorwise (1.7s).

6.4.4 VOILA vs. State-of-the-Art Prefetching

The recent re-emergence of prefetching methods highlighted the importance of in-
telligent data structure access for overall query performance. In this experiment,
we compare VOILA-synthesized queries to hand-optimized implementations of such
as Interleaved Multi-Vectorization (IMV) [FZW19] and Relaxed Operator Fusion
(ROF) [MMP17].

The source code of IMV [FZW] revealed an already allocated perfectly sized hash
table (size taken from a previous run). At runtime, IMV just inserts values into that
hash table and builds bucket chains on-the-fly. Therefore, we implemented a flavor
of IMV that can build a hash table of unknown size (HyperBuild). VOILA currently
lacks a notation for buffering (eliminating filtered out tuples) and produces more
intermediate states in concurrent state machines than strictly necessary. To enable
an “apples-to-apples”, in IMV, we disabled buffering (NoBuffering) and added 3
additional states to the state machine (Indirections). As baseline, we chose a FUJI
flavor that resembles IMV: (avx512, 8, 1). Both are using prefetching, multiple
concurrent state machines and feature an implementation in AVX-512. We ran all
queries single-threaded and used SF 10. Table 6.4 shows our results.

115

6.4. EVALUATION

Table 6.5: VOILA-synthesized queries are significantly faster than other open-source
systems. DuckDB & LegoBase do not support parallelism. Runtimes in s, on TPC-
H SF 10.

System Q1 Q3 Q6 Q9
Single-threaded
VOILA 0.59 0.93 0.15 2.07
DuckDB 5.71 (9.5×) 2.25 (2.4×) 0.64 (4.3×) 36.26 (17.5×)
LegoBase 0.78 (1.3×) 5.19 (5.5×) 0.29 (1.3×) 32.69 (15.8×)
24 threads
VOILA 0.05 0.25 0.03 0.19
MonetDB 1.15 (24.3×) 0.36 (1.5×) 0.72 (28.8×) 0.30 (1.6×)
Weld 0.39 (8.3×) 3.05 (12.3×) 0.11 (4.3×) 6.90 (35.5×)

Compared to IMV, the VOILA-generated query achieves a similar performance.
Once we remove certain factors that ensured a fair comparison (Indirections, NoBuffer-
ing, HyperBuild), IMV becomes up to 60% faster. We see this as an indication that
future versions of VOILA should include (a) buffering and (b) further measures to
minimize the number of states (in concurrent state machines). Compared to ROF,
VOILA is roughly 20% slower. A crucial difference is that VOILA does not support
buffering yet.

6.4.5 VOILA vs. State-of-the-Art Open-Source

We compare VOILA to high-performance open-source systems: Weld [PTS+17], a
domain-specific language for data analytics, DBLAB/LegoBase [SKP+16, dbl], an
elaborate query compiler, DuckDB [RM19], a vectorized in-memory DBMS, and
MonetDB [IGN+12], an in-memory DBMS executing queries column-at-a-time. In
the process, we had to make adjustments to the queries in Weld and LegoBase.
Weld does not support group-by on strings – required for Q9 – therefore, we gave
Weld the unfair advantage of using string dictionaries. We translated n_name into
an integer and resolve the string at the end of the query. LegoBase allows many
different query-specific optimizations, e.g. string compression and partitioning, that
are not “TPC-H compliant” [SKP+16]. To enable a fair comparison, we used the
TPC-H compliant settings proposed by Shaikhha et al. [SKP+16]. We compare the
performance of queries generated by these systems to best flavor synthesized from
VOILA. Table 6.5 shows the results.

Queries generated from VOILA are up to 17.5× faster, without parallelism, and up
to 35.5× faster, using all cores.

116

6.4. EVALUATION

Single-threaded, VOILA-synthesized queries ran, across the board, 30% – 17.5×
faster than DuckDB and LegoBase. Due to its early stage, DuckDB does not ex-
tensively focus on query performance, which explains its 4.3× – 9.5× slower perfor-
mance on simple aggregation queries (Q1 & Q6).

However, performance is the main focus of LegoBase compiler. LegoBase performs
similarly (±30%) on simple aggregation queries. For complex join queries, LegoBase
performs significantly worse (5.5× – 15.8× slower), than VOILA. LegoBase tends
to produce suboptimal code, partly caused by complex intermediate structures re-
sulting from expressing a join (dict[(key1, key2), list[(val1, val2]]) which are
very challenging to remove [Wad88].

Multi-threaded, all queries generated using Weld are 4.3× – 35.5× slower than
queries generated from VOILA. Weld tends to perform better on the simple aggre-
gation queries and ran only 4.3× – 8.3× slower than VOILA. Weld performs worse
on complex join queries, 12.3× – 35.5× slower than VOILA. Part of this overhead
in Weld is caused by complex intermediate structures. Additionally, in Weld, it is
impossible to express primary-foreign-key joins (joins that can only produce one or
none match) which further exaggerates already existing inefficiencies. We noticed
that, for Q1 and Q6, single-threaded Weld is substantially faster and performs
roughly on par with VOILA. VOILA outperforms MonetDB, especially on simple
queries, by up to 28.8×. On join queries, MonetDB performs better, but VOILA is
still 50% faster.

6.4.6 Engineering Aspects

We investigate the complexity of our code generation modules and compare devel-
opment times to hand-writing queries.

Back-End Complexity. To understand the complexity of back-end modules, we
measured the lines of code (LOC) excluding debug information, comments and
empty lines.

Our compilation back-end modules are rather compact (600 – 1300 LOC). Direct
back-ends tend to be simpler as they just concatenate strings (600 – 700 LOC). FUJI
back-ends are more complex (600 – 1300 LOC) as (a) they include buffering logic
for BLEND and (b) interact with other modules (FUJI front-end, FUJI generic back-
end). Compared to the code generator of Weld [PTS+17] which contains 20k LOC,
our back-ends are 16 – 33× more compact. Compared to Hyper’s code generator,
which was 10k LOC in size [Neu11], our data-centric back-end modules are 16.7×

117

6.5. CONCLUSION

more compact. The smaller size of our back-end modules makes them rather easy
to engineer.

Personal Experiences. In our personal experience, writing a direct back-end took
roughly 5 days. Compared to 1–3 months expected to handwritten specific flavors
for the queries, this is a 6 – 18× speedup! FUJI back-ends, without buffering, were
roughly equivalent. Buffering in FUJI back-ends provided a small extra hurdle of
roughly 1-2 extra days. Compared to the code generators, most time was consumed
by engineering a generic runtime framework.

6.5 Conclusion

This chapter shed some light on the practical aspects of VOILA. In particular, how
VOILA can be transformed into executable code:

Generating efficient Code from VOILA. For analytical queries, a low pro-
cessing overhead (i.e. efficiency) is paramount. Currently, there are two execution
paradigms that can be considered state-of-the-art: Data-centric execution [Neu11]
and vectorized execution [BZN05]. However, it has not been possible to synthesize
both implementations from one representation before.

VOILA can be directly lowered into C++ (direct back-ends in Section 6.6.2). No-
table examples are the data-centric direct back-end (Section 6.2.1) and the Iterator-
based Vectorized (Section 6.2.2). VOILA allows synthesizing both state-of-the-art
paradigms from one representation. When synthesized from VOILA, both para-
digms, show comparable performance to handwritten and optimized implementa-
tions (which were shown to perform similarly to the systems [KLK+18] that origi-
nally implemented these paradigms).

Beyond the State-of-Art. Direct back-ends have the issue that for each design
space point, one would need to craft one back-end. FUJI – a new code generator
– mitigates this. It does so by decomposing code generation into different compo-
nents. Each component then synthesizes specific parts. At code generation time,
these components can be recomposed to create various hybrids (e.g. with/without
prefetching, SIMD).

Design Space Exploration and Prototyping. Especially, for design space ex-
ploration, one would need to write a new back-end to prototype “crazy new ideas”.
In Section 6.4.6, we estimated the time required to engineer a new back-end. Com-
pared to compiling SQL or physical plans to low-level code (e.g. LLVM IR or C++),

118

6.5. CONCLUSION

new back-end are relatively compact and relatively easily created. The reason is
that VOILA operations often overlap (re-appear) in multiple query plan operators
as well as LOLEPOPs. Most notably, group-by and join use very similar code pat-
terns (hash chain probing). Consequently, this reduces the re-implementation effort
(e.g. hash chain probing has to be only implemented once), in terms of time and
space (code generator size).

FUJI went a step further, by decomposing code synthesizers into components, new
ideas can be prototyped just by implementing a new component. Consequently, this
can save significant time and code generator size, while allowing to easily explore
neighboring points in the design space, the other components are unaffected and
can be enabled at code generation time.

Needless to say, new back-ends or components would automatically benefit from
the surrounding framework (data loading, queries, parallelization etc.).

Hardware-Dependency. So far, we assumed that the performance of points (in
the design space) translates to different machines (if flavor α works well on machine
A, it also performs well on machine B). In the following chapter, we put this
simplification to the test.

119

6.5. CONCLUSION

120

CHAPTER 7

Performance is Relative

Everything we hear is an opinion,
not a fact. Everything we see is a
perspective, not the truth.

Marcus Aurelius

7.1 Introduction

Lately, we have seen multiple new hardware architectures moving from niche to
mainstream, Most notably ARM-based architectures have moved from niche, em-
bedded devices, to ubiquitous smartphones, until reaching server-grade hardware
(e.g. Amazon Graviton, Apple M1). While it is commonly understood that the best
execution tactic (flavor) is known and (somewhat) predictable [KLK+18], it can be
that changes in the underlying hardware affected the performance characteristics.
Therefore, the statement “the best execution tactic is known and predictable” may
not be universally true, but would require some extra nuance.

In this chapter, we verify this statement by testing multiple query execution para-
digms on machines with different architectures (X86, ARM, PowerPC and RISC-V).

121

7.1. INTRODUCTION

Table
7.1:

T
he

hardw
are

bouquet
used

for
the

experim
ents.

It
consists

of
m

achines
w

ith
different

architectures
(X

86,
A

R
M

,
Pow

erPC
and

R
ISC

-V
).

Skylake-X
8275C

L
Epyc

G
raviton

1
G

raviton
2

M
1

Pow
er8

Pow
er9

910
Platform

X
86

X
86

X
86

A
R

M
v8.0

A
R

M
v8.2

A
R

M
v8.4

PPC
PPC

R
ISC

-V
A

rchitecture
Skylake-X

C
ascade

Lake-SP
Zen

2
C

ortex-A
72

N
eoverse

N
1

Fire-/Icestorm
PO

W
ER

8
PO

W
ER

9
C

-910
Processor

M
odel

X
eon

G
old

X
eon

Platinum
Epyc

7552
G

raviton
1

G
raviton

2
PO

W
ER

8
PO

W
ER

9
C

-910
6126

8275C
L

T
hreads

per
C

ore
1

2
2

1
1

1
8

4
1

C
ores

per
Socket

12
24

48
4

64
4+

4
8

16
2

Sockets
2

2
1

4
1

1
2

2
1

N
U

M
A

N
odes

2
2

1
1

1
[A

m
a21b]

1
2

2
1

R
A

M
(G

iB
)

192
192

192
32

128
[aw

s21a]
16

256
128

4
L3

(M
iB

)
19.25

35.75
192

-
32

[aw
s21a]

-
64

120
-

L2
(kiB

)
1024

1024
512

2048
[aw

s21b]
1024

[aw
s21a]

4096/2048
512

512
2048

L1d
(kiB

)
32

32
32

32
[aw

s21b]
64

[aw
s21a]

128/64
64

32
64

L1i(kiB
)

32
32

32
48

[aw
s21b]

64
[aw

s21c]
192/128

32
32

64
Freq.

m
ax

(G
hz)

3.7
3.6

3.5
2.3

[aw
s21b]

2.5
[aw

s21c]
3.2/2

3.0
3.8

1.2
Freq.

m
in

(G
hz)

1.0
1.2

1.8
2.3

[aw
s21b]

2.5
[aw

s21c]
0.6/0.6

2.0
2.1

1.2
AW

S
Instance

-
c5.m

etal
c5a.24xlarge

a1.m
etal

r6gd.m
etal

-
-

-
-

122

7.2. METHODOLOGY

7.2 Methodology

We conduct micro- to macro-level experiments with varying and, rather, diverse
hardware.

Hardware. For our experiments, we used 3 X86 machines (Skylake-X, 8275CL and
Epyc), 3 ARM machines (Graviton 1, 2 and M1), 2 PowerPC machines (Power8
and Power9) and one RISC-V machine (910). Details can be found in Table 7.1.
Some machines have noteworthy special features: The Graviton 2 has accelerated
access to always-encrypted memory, as well as acceleration for fast compression and
decompression [Ama21b]. The M1 features a heterogeneous design of 4 fast CPU
cores (Firestorm), 4 slow CPU cores (Icestorm), an integrated GPU and acceleration
for Neural Networks. The 910 appears to be an early prototype of a RISC-V-based
machine – rather a development board – and appears to target functionality testing,
rather than performance (e.g. seems to lack proper cooling). Therefore, we only
included the 910 into the basic micro-benchmarks, as its performance seems to be
the worst of our hardware bouquet. Furthermore, neither Graviton 1, nor M1, nor
910 seem to have an L3 cache.

Synthesizing Efficient Implementations. Rather than implementing the re-
quired queries by hand, we synthesize them. VOILA (Chapters 5 and 6) allows
synthesizing many implementations from one query description. It generates data-
centric and vectorized flavors that perform on-par with handwritten implementa-
tions and, implicitly, the systems Hyper [Neu11] and Vectorwise [BZN05]. VOILA
also allows generating mixes that facilitate prefetching and efficient overlapping of
prefetching with useful computation, similar to AMAC [KFG15] and IMV [FZW19].
Here, we use the VOILA-based synthesis framework to generate the implementa-
tions required for our experiments on holistic query performance. To investigate
such impacts, we ported the VOILA synthesis framework to non-X86 architectures.

7.3 Micro-Benchmarks

We start with micro-benchmarks that stress specific aspects of the underlying hard-
ware: (a) memory access, (b) data-parallel computation and (c) control flow & data
dependencies.

For each type, we implemented vectorized primitives, functions that operate on
columnar vectors in a tight loop. We ran the micro-benchmarks multi-threaded
using all available threads to the operating system (i.e. including SMT, if available).

123

7.3. MICRO-BENCHMARKS

27 29 211 213

Array Size (kiB)

0

2

4

6

8

10

12

14

Ac
ce

ss
Ti

m
e/

Ite
m

(n
s)

pe
rp

hy
sic

al
co

re

X86 Skylake-X
X86 8275CL
X86 Epyc
ARM Graviton 1
ARM Graviton 2
ARM M1
PPC Power8
PPC Power9
RISC-V 910

(a) Cache-mostly random Reads

24 26 28 210 212 214 216

Array Size (MiB)

0

20

40

60

80

100

120

140

Ac
ce

ss
Ti

m
e/

Ite
m

(n
s)

pe
rp

hy
sic

al
co

re

(b) Main-memory-mostly random Reads

24 26 28 210 212 214 216

Array Size (MiB)

0

20

40

60

80

100

120

140

Ac
ce

ss
Ti

m
e/

Ite
m

(n
s)

pe
rp

hy
sic

al
co

re

(c) Main-memory-mostly random SUM

Figure 7-1: Memory-heavy workloads.

We report per-tuple timings in nanoseconds, normalized by the number of SMT
threads (e.g. for 1 real core and 8 SMT threads, we divide the time by 8).

7.3.1 Memory Access

In modern database engines, memory access is a well-known bottleneck for certain
queries [BKM08]. Therefore, we investigate memory access performance. We dif-
ferentiate between (1) cache-mostly random reads, (2) bigger-than-cache random
reads and (3) the SUM aggregate as a read-update-write workload. Each experiment
accesses an array of 64-bit integers at pseudo-random indices.

Cache-mostly random Reads. The runtimes for each random access read from
a small array are plotted in Figure 7-1a. In general, we see very little difference, but
two extreme outliers: The Graviton 1 and the 910 feature very slow cache access,
of which the 910 shows the worst performance. Faster than Graviton 1, but slower
than the others (Skylake-X, 8275CL, Eypc, Power8) are Power9 and Graviton 2.
Both provide relatively slow access to small-to-medium-small arrays. The Graviton
2, however, can “catch up with the crowd”, for slightly bigger arrays.

124

7.3. MICRO-BENCHMARKS

Main-Memory-mostly random Reads. We now move to large arrays which
likely do not fully reside in caches. That means that on NUMA machines, we might
see NUMA overheads (data needs to be shipped from one socket to another). As
massive arrays do not fit into one NUMA node, we decided to interleave the whole
array over all NUMA nodes (round-robin assignment of pages to NUMA nodes, page
i assigned to node i % num_nodes). Essentially, this resembles the initial bucket
lookup of the scalable non-partitioned hash join described by Leis et al. [LBKN14]
which also effectively interleaves the array over all NUMA nodes.

For large arrays, the random reads are visualized in Figure 7-1b. We see a rather
big divergence, especially with growing array size.

Skylake-X, 8275CL and Graviton 2 perform best, of which the Graviton 2 outper-
forms the other two for arrays > 214 integers. It has to be said that Graviton 2 offers
direct non-NUMA memory access whereas, both, the Skylake-X and the 8275CL,
are NUMA machines and might require transferring data from other sockets over a
shared bus. While this is a rather uncommon architectural decision, this gives the
Graviton 2 an advantage, as it can avoid costly data transfers over a shared bus
and use fast local memory instead. The other competitive non-NUMA machine is
the Epyc, but it tends to feature rather slow memory access for L3-mostly (until
27 MiB) and main-memory-mostly random reads.

SUM Aggregate. The SUM is a read-update-write workload and will, therefore, for
many core systems involve a cache invalidation cost (invalidate, write back and
possibly read from another core or socket). However, due to the relatively large
size of the array, the chance of such false sharing (writing a cache line that is, later,
read and modified by another core or socket) is relatively low. Figure 7-1c shows
our measurements. The measurements look similar to random-read workload, but
tend to be slower. We can observe that the Skylake-X and 8275CL outperform for
large arrays, followed by the Graviton 2, which outperforms for arrays ≤ 27 MiB.

Conclusions. Both, the Graviton 1 and the 910, show slow memory access across
the board. Power8 and Epyc are slower for larger arrays. The Skylake-X and
8275CL are fast across the board. Graviton 2 is relatively slow (compared to
Skylake-X, 8275CL) on smaller arrays (≤ 213 kiB), but outperforms for large arrays
(≥ 215 MiB).

125

7.3. MICRO-BENCHMARKS

Add 32-bit Add 8-bit Mul 32-bit Mul 8-bit
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Ac
ce

ss
Ti

m
e/

Ite
m

(n
s)

pe
rp

hy
sic

al
co

re

X86 Skylake-X
X86 8275CL
X86 Epyc

ARM Graviton 1
ARM Graviton 2
ARM M1

PPC Power8
PPC Power9
RISC-V 910

Figure 7-2: Computation without selection vector, amenable to SIMD acceleration
(opaque). Computation with selection vector introduces indirection (transparent).

7.3.2 Data-Parallel Computation

Besides memory access, the other important cornerstone for query performance
is computational power. As examples of computation-heavy workloads, we per-
formed a series of additions and multiplications in a tight loop. We investigate
the performance of relatively cheap (addition) vs. relatively pricey (multiplication)
operations, and the impact of thin data types (Chapter 3). For vectorized kernels,
there are two alternative paths that influence performance: (a) the non-selective
path that only fetches data from input vectors, computes the result and writes the
output, and (b) the selective path which introduces an additional indirection.

The non-selective path accesses plain arrays (vectors) in sequential order and is,
thus, amenable to acceleration with SIMD. Thanks to the trivial access pattern,
the compiler will typically automatically SIMD-ize this code path.

Selective execution intends to only process selected tuples (i.e. efficiently ignore
values that are filtered out). We implemented this path, like described by the
classic vectorized execution model [BZN05], using selection vectors that describe
which indices in the vectors are alive. Due to this indirection, the compiler will
typically not SIMD-ize this path. To reduce branch prediction overhead (in the for

loop), we unrolled this path 8 times.

Performance. Our results can be found in Figure 7-2. At the first glance, we see
that selective computations (transparent) are significantly pricier than non-selective
computations (opaque). This is due to the extra indirection, which is (a) expensive

126

7.3. MICRO-BENCHMARKS

Table 7.2: Graviton 1 & 2 provide consistent performance over multiple degrees
of parallelism (DOP, N), while many others show significant slowdowns. (32-bit
integer multiplication without selection vector, without adjustment for SMT, DOP
beyond real cores are marked in italics on gray)

Hardware Time/Item in ns (slowdown) on given DOP N

Machine T N=1 T/8 T/4 T/2 T

X86 Skylake-X 24 0.08 0.08 (1.0×) 0.09 (1.1×) 0.09 (1.2×) 0.12 (1.5×)
X86 8275CL 96 0.08 0.08 (1.0×) 0.10 (1.4×) 0.17 (2.3×) 0.18 (2.3×)
X86 Epyc 96 0.08 0.08 (1.0×) 0.08 (1.0×) 0.12 (1.5×) 0.17 (2.3×)
ARM Graviton 1 16 0.34 0.34 (1.0×) 0.36 (1.1×) 0.35 (1.0×) 0.38 (1.1×)
ARM Graviton 2 64 0.20 0.20 (1.0×) 0.20 (1.0×) 0.20 (1.0×) 0.20 (1.0×)
ARM M1 8 0.07 is N = 1 0.08 (1.1×) 0.08 (1.1×) 0.12 (1.7×)
PPC Power8 128 0.26 0.38 (1.4×) 0.68 (2.6×) 1.27 (4.8×) 1.38 (5.2×)
PPC Power9 128 0.19 0.27 (1.4×) 0.52 (2.7×) 0.95 (5.0×) 1.04 (5.4×)

and (b) prevents efficient SIMD-ization. To alleviate this overhead, in a vectorized
system one would, typically, ignore the selection vector, when the vector more than,
say, 30% full (“full computation” [RBZ13]).

Between machines, we also see significant differences. The 910 shows “off the charts”
performance for 32-bit additions and multiplications, and is roughly 24× slower
than the Skylake-X or the Epyc. The Graviton 1 significantly faster than the 910,
but is roughly 4× slower than the Skylake-X or the Epyc. The fastest machines
are Skylake-X, 8275CL and Epyc which are roughly 2× faster than the other ma-
chines. For ARM platforms, the slowdown is likely caused by the lack of compiler
auto-vectorization. For non-selective workloads, thin data types provide significant
benefit on most platforms. However, this benefit disappears when the selection
vector is used. A notable exception is the M1, which not only lacks vectorization
benefits but also incurs additional overhead for loading and storing 8-bit integers.
For the 8-bit addition, the M1 even performs worse than the 910.

Scalability. Typically, when using all available cores, processors tend to reduce
computational throughput significantly. This is typically due to heat emission.
Each chip has a given thermal budget (thermal design power, TDP): If the budget
is reached, heat emission needs to be curtailed. Therefore, cores clock down and,
thus, scale computational throughput down.

In this experiment, we run many SIMD-izable (non-selective) 32-bit integer mul-
tiplications with varying degrees of parallelism (DOP, or number of threads N).
We scale the DOP from 1 (no parallelism) to the level of parallelism the hardware
provides (T). Note that this experiment evaluates the best-case, as the scalabil-
ity of OLAP queries is typically limited by other factors, such as memory-access.
Table 7.2 shows our results.

127

7.3. MICRO-BENCHMARKS

Listing 7.1: Vectorized kernel: Creating a selection vector using branches
int select_true (int* res , i8* a, int* sel , int n) {

int r = 0;
if (sel) {

for (int i=0; i<n; i++) {
if (a[sel[i]]) res[r++] = sel[i];

}
} else {

for (int i=0; i<n; i++) {
if (a[i]) res[r++] = i;

}
}
return r;

}

With increasing DOP, we see a tendency to significant slowdowns of 50% to 2.7×
without using SMT cores and up to roughly 5× with SMT cores. However, except
for the Graviton-based platforms which, evidently, do not clock down significantly.
M1 showed less throughput beyond 4 cores. This can be explained by the design
of the M1 that combines 4 fast and 4 slow cores, i.e. workloads with >4 threads
(> T/2) will also use the slower cores.

7.3.3 Control Flow & Data Dependencies

Besides data-parallel computation, modern engines typically also rely on fast control
flow and data dependencies. Depending on the hardware (e.g. pipeline length),
branch misses can become quite costly, and data dependencies reduce the CPU
pipeline parallelism. In vectorized engines, such operations appear when creating a
selection vector (e.g. in a filter or hash-based operators). Therefore, we benchmark
the performance of selection vector creation.

Selection vectors can be built in multiple ways: Most commonly, they are created
using (a) branches or (b) data dependencies. Alternatively, one can create selection
vector using X86-specific AVX-512 vpcompressstore [KLK+18]. While this method
is often faster [KLK+18], creating selection vectors using AVX-512 is not portable
to other hardware architectures.

A branch-based implementation, as in Listing 7.1, stresses the branch predictor.
For very high/low selectivities, the branch becomes predictable. The closer the
selectivity comes to 50%, the more unpredictable the branch becomes.

As an alternative to creating selection vectors using branches, one can introduce
a data dependency. In pseudocode, in Listing 7.1, this means replacing if (a[k])

res[r++] = k by res[r] = k; r+= a[k]. Obviously, this avoids the overhead of mis-
predicting branches, but might introduce additional costs for predictable branches.

128

7.3. MICRO-BENCHMARKS

0 20 40 60 80 100
Selectivity

1

2

3

4

5
Ac

ce
ss

Ti
m

e/
Ite

m
(n

s)
pe

rp
hy

sic
al

co
re

(a) Branch-based creation

0 20 40 60 80 100
Selectivity

1

2

3

4

5

Ac
ce

ss
Ti

m
e/

Ite
m

(n
s)

pe
rp

hy
sic

al
co

re

X86 Skylake-X
X86 8275CL
X86 Epyc
ARM Graviton 1
ARM Graviton 2

ARM M1
PPC Power8
PPC Power9
RISC-V 910

(b) Dependency-based creation

Figure 7-3: Control-Flow & Data-Dependency-intensive workload: Creating a se-
lection vector from an 8-bit boolean predicate.

Results. For the branch-based creation of selection vectors, our results can be
found in Figure 7-3a. We refer to selectivity as the fraction of tuples that pass
the filter (100% = all pass). Typically, one would expect lower timings (faster) for
very low and high selectivities because the branch becomes predicable. Around 50%
selectivity, one would expect the worst performance as the branch is unpredictable.
We can observe this behavior on the Epyc and Power9. The plot of the Graviton
1 stands out due to very high cost, and edge behavior at middle-low and -high
selectivities, which are costlier than branches of 50%. Also interesting, is the plot of
the M1, which exhibits an asymmetrical shape where taking the branch (if(a[i]))
is pricier than skipping it.

We now juxtapose the performance of branch-based (Figure 7-3a) with the depen-
dency-based selection vector creation (Figure 7-3b). In general, dependency-based
creation tends to outperform, with one notable exception: The Epyc for which the
branch-based created is faster. For the 8275CL, both variants are roughly equal.
Thus, it can be said that the best way to create a selection vector depends on the
hardware at hand. In a system, it is advisable to determine the choice between
branch- and dependency-based selection vector building adaptively at runtime.

7.3.4 Case Study: Hash Join

As we gradually move towards macro-benchmarks, we now investigate the per-
formance of a hash join. In particular, we are interested whether the heuristic
vectorized execution excels in data-access-heavy workloads is true on different hard-
ware/platforms.

129

7.3. MICRO-BENCHMARKS

Table 7.3: Best execution paradigm unclear for simple join query. Best flavor as
tuple (Computation Type, Prefetch, #FSMs), data-centric (blue) and prefetching
(italics).

Machine Best Flavor Well-known Flavors
Name best (ms) x100 (ms) hyper (ms)

X86 Skylake-X vec(1024),3,1 173 209 239
X86 8275CL vec(512),3,2 176 192 236
X86 Epyc scalar,4,16 134 139 157
ARM Graviton 1 scalar,0,1 412 440 412
ARM Graviton 2 vec(1024),0,1 101 101 115
ARM M1 vec(1024),4,1 228 273 297
PPC Power8 vec(512),2,1 488 498 507
PPC Power9 scalar,3,1 317 339 317

Therefore, we synthesized the following SQL query using the VOILA-based synthesis
framework (Chapter 5):

SELECT count (*) FROM lineitem , orders
WHERE o_orderdate < date ’1996 -01 -01 ’

AND l_quantity < 50 AND l_orderkey = o_orderkey

We ran this query in multiple flavors on the TPC-H data set with scale factor 10.
Table 7.3 shows the best flavor as well as the runtimes of the data-centric (hyper)
and vectorized (x100) execution.1

We see that the majority of the best flavors are indeed vectorized. To our surprise,
data-centric flavors can beat vectorized flavors. Typically, the winning data-centric
flavors need elaborate prefetching to outperform, with one notable exception: On
the Graviton 1, the plain data-centric flavor (without Finite State Machines and
without prefetching) outperforms the vectorized flavors.

Favorable Features for Data-Centric Execution. We believe that on the
Graviton 1 the 3 − 4× slower computation (slower cores) (Figure 7-2) favors data-
centric execution because the more efficient computation (data-centric, less issued
instructions) outweighs the less efficient memory-access.

The other machines feature faster cores. The massive L3 caches, on the Epyc and
Power9, tend to benefit data-centric flavors, as huge L3 caches leads to effectively
faster memory access (more data in faster memory) and, thus, making more efficient
memory access (using vectorized execution) less important. This is further exag-
gerated via SMT, which can effectively hide memory access latency by executing
another thread. On the Epyc, both features (SMT and large L3) are barely enough

1We use x100 as short identifier for vectorized execution, in reference to MonetD-
B/X100 [BZN05] – which later became Vectorwise and currently is called Vector.

130

7.4. MACRO-BENCHMARKS

to allow a data-centric flavor to win (134ms vs. 139ms, roughly on noise level). We
notice similar behavior on the Power8/Power9, which feature a large L3 cache and,
compared to the Epyc, a higher degree of SMT (8 threads on Power8, or 4 threads
on Power9, vs. 2 threads per core).

In summary, we can say that, certain hardware properties (slow cores, large L3
cache and SMT) have a tendency to favor data-centric execution, for joins.

7.4 Macro-Benchmarks

While micro-benchmarks, provide useful insights into extreme cases, it is difficult
to draw conclusions on holistic query performance. Queries are more complex than
simple operations and are, thus, rarely completely limited by either memory band-
width, or computational throughput. Using VOILA, we generated implementations
for TPC-H Q1, Q3, Q6 and Q9. For our benchmarks, we used the TPC-H data set
with scale factor 10. For each query, we sampled 50 different execution flavors from
the universe that VOILA can generate, always including the two most well-known
ones: pure data-centric compilation [Neu11] and pure vectorized execution [BZN05].

7.4.1 Query Performance

Here, we compare the runtime of data-centric (hyper) and vectorized (x100) on
varying hardware in terms of overall system performance and per-core performance.
The results are visualized in Table 7.4.

Overall Performance. We notice a significant diversity in overall runtimes of up
to, roughly, 10× between the fastest and the slowest machine. Common wisdom
would suggest that X86 would perform best, but surprisingly, the ARM Graviton
2 significantly outperforms all others. Compared to the runner-up (Skylake-X), it
performs up to 3× faster (Q9 hyper) and, often executes queries roughly 2× faster
(Q1, Q3, Q9).

On Q9, we see data-centric flavors outperforming vectorized flavors, for the Epyc,
Graviton 1 and Power9. This is due to the hardware properties we identified in
Section 7.3.4: massive L3 caches (Epyc, Power9), SMT (Epyc, Power9) as well as
slow cores (Graviton 1). These factors favor data-centric execution on join-intensive
workloads such as Q9 in particular.

Another important query is Q3, which is less join-heavy and is, therefore, less suited
to vectorized execution. We noticed that data-centric outperforms on 8275CL, Epyc,

131

7.4. MACRO-BENCHMARKS

Table 7.4: Graviton 2 beats all other machines in overall performance. M1 leads in
performance per core. Runtimes of well-known query execution paradigms.

Machine Q1 Q3 Q6 Q9
x100 hyper x100 hyper x100 hyper x100 hyper

Runtime (milliseconds)
X86 Skylake-X 79 54 261 282 28 35 228 291
X86 8275CL 93 84 480 397 70 112 232 261
X86 Epyc 81 65 241 238 51 52 193 180
ARM Graviton 1 188 107 447 447 55 45 720 715
ARM Graviton 2 42 29 162 158 20 22 95 109
ARM M1 216 86 313 440 138 404 432 590
PPC Power8 404 384 1094 1132 336 337 627 636
PPC Power9 239 225 645 631 190 192 406 393
Runtime * Number of real cores (seconds)
X86 Skylake-X 1.9 1.3 6.3 6.8 0.7 0.8 5.5 7.0
X86 8275CL 4.5 4.1 23.1 19.0 3.4 5.4 11.1 12.5
X86 Epyc 3.9 3.1 11.6 11.4 2.4 2.5 9.3 8.6
ARM Graviton 1 3.0 1.7 7.1 7.2 0.9 0.7 11.5 11.4
ARM Graviton 2 2.7 1.9 10.4 10.1 1.3 1.4 6.1 7.0
ARM M1 1.7 0.7 2.5 3.5 1.1 3.2 3.5 4.7
PPC Power8 6.5 6.1 17.5 18.1 5.4 5.4 10.0 10.2
PPC Power9 7.6 7.2 20.6 20.2 6.1 6.1 13.0 12.6

Graviton 2, Power8 and Power9. This is partially caused by the hardware factors
we identified (L3 size, SMT, slow cores) and, partly, by the structure of the query.

Per-Core Performance. We scale the multi-threaded performance up to the
number of real cores. This provides a per-core performance metric that includes po-
tential multi-core scalability bottlenecks (e.g. down clocking, memory bandwidth).
Implicitly, this metric favors systems with a lower number of cores (typically close
to desktop systems).

The machines with a lower number of cores (Graviton 1, M1 and Skylake-X) score
best. This is partly an artifact of queries not scaling perfectly sometimes, but it
indicates real per-core performance (i.e., in a parallel workload). This per-core
performance is dominated by ARM platforms, except for Q6 x100. But to our
surprise, the Graviton 2, with 64 cores, comes close to the best 3. This indicates
that Graviton 2 scales quite well, up to all 64 cores, on whole queries and not just
in micro-benchmarks (Section 7.3.1 and Section 7.3.2).

7.4.2 Optimal Flavor

Here, we investigate which execution paradigm (flavor) is the best for each query.
Using the VOILA-based synthesis framework, we generated basic flavors, i.e. one
flavor per query (no mixes). Table 7.5 shows the flavors with the lowest average
runtime.

132

7.4. MACRO-BENCHMARKS

Table 7.5: Best query execution paradigm unclear, even for specific queries (e.g.
Q9). Best flavor as tuple (Computation Type, Prefetch, #FSMs). Data-centric
(scalar) flavors are marked in blue color, prefetching in italics.

Machine Q1 Q3 Q6 Q9
X86 Skylake-X scalar,0,1 vec(2048),3,1 vec(1024),3,1 vec(1024),2,1
X86 8275CL scalar,2,1 scalar,3,8 vec(512),4,1 scalar,2,32
X86 Epyc scalar,2,1 vec(256),1,1 vec(1024),2,1 vec(512),0,1
ARM Graviton 1 scalar,0,1 vec(512),0,1 scalar,4,1 vec(256),0,1
ARM Graviton 2 scalar,2,1 scalar,0,1 vec(2048),2,1 vec(512),0,1
ARM M1 scalar,0,1 vec(2048),2,1 scalar,3,1 vec(1024),2,1
PPC Power8 scalar,0,1 vec(1024),2,1 vec(256),0,1 scalar,2,2
PPC Power9 scalar,3,1 vec(512),0,1 vec(256),2,1 scalar,2,8

Best Flavor. We can see that some configurations, most notably Skylake-X and
Epyc, exhibit the behavior described by Kersten et al. [KLK+18] that data-centric
wins in Q1 and vectorized wins in Q3 and Q9. However, surprisingly, we found data-
centric flavors winning on the join-heavy Q3 and Q9. Notably, these are augmented
data-centric flavors with prefetching and multiple finite state-machines (FSMs) that
allow overlapping prefetching with useful computation. In particular, these aug-
mented data-centric flavors perform well on large machines with multiple threads
per core (SMT), i.e. 8275CL, Power8 and Power9.

Although, the winning flavor on Q1 is data-centric (scalar), we can see the use
of prefetching for a query that runs mostly in cache. This is caused by the low
overhead introduced by prefetching rather than the actual benefit of prefetching
(improvements between data-centric and best flavor in Q1 are on noise level, i.e. <
15%).

Are the “best Flavors” really better? Table 7.6 shows the improvement of
the best flavors over the well-known data-centric (hyper) and vectorized (x100).
Often, the best flavor outperformed the well-known ones by 10-31%. In some cases,
the difference was on noise level, but in other cases the best flavor significantly
outperforms well-known ones by up to 220%. Therefore, we can conclude that
there is significant performance diversity, which – in some cases – can be exploited.
However, taking advantage of this diversity, in practice, would require significantly
more flexible engines.

7.4.3 Costs & “Bang for the Buck”

While the ARM Graviton 2 might outperform the other machines on performance,
it may not necessarily provide the best performance and a price-adjusted basis.

133

7.4. MACRO-BENCHMARKS

Table 7.6: Best flavors outperform by up to 220%. Runtime improvement over plain
vectorized (x100)/data-centric (hyper).

Machine Best vs. x100 (%) Best vs. hyper (%)
Q1 Q3 Q6 Q9 Q1 Q3 Q6 Q9

X86 Skylake-X 47 3 5 13 is 12 29 44
X86 8275CL 14 54 12 16 4 27 79 31
X86 Epyc 29 8 3 19 3 6 7 11
ARM Graviton 1 77 1 22 12 is 1 0 11
ARM Graviton 2 62 3 15 2 12 is 23 17
ARM M1 150 7 10 9 is 51 220 49
PPC Power8 5 9 3 9 is 12 3 11
PPC Power9 7 3 3 10 1 1 5 7

Table 7.7: ARM Gravitons are significantly cheaper and provide most “bang for the
buck”.

Machine $
hour

Cents per real core
hour Q9 (ms) 1M × Q9 ($)

X86 Skylake-X (price est.) 1.3392 5.6 228 84
X86 8275CL 0.9122 1.9 232 59
X86 Epyc 0.9122 1.9 193 49
ARM Graviton 1 0.0788 0.5 720 16
ARM Graviton 2 0.7024 1.1 95 19

Therefore, we investigated the costs for renting the hardware, used for our experi-
ments, and discuss cost performance trade-offs.

For pricing, we used the spot prices reported on AWS [Ama21c]. Unfortunately,
PowerPC architectures and the M1 were not available. Even though we did not use
AWS for our Skylake-X machine, we found a similar instance type (z1d.12xlarge)
that we used for pricing.

Cost. We visualized the costs in Table 7.7. From that table, it is evident that
ARM-based instances are up to 12× cheaper per hour and 11× cheaper per core.
The most expensive instance is the Skylake-X. It is also the best performing X86
machine (Q1, Q3, Q6 and Q9) and is only beaten on Q9 by the Epyc.

Cost per Q9 run. Typically, faster machines are pricier. Therefore, we calculated
the cost for 1 million runs of vectorized flavor of TPC-H Q9 with scale factor 10.

On this metric, the ARM instances outperform by > 2×. Compared to the cheapest
X86-instance (Epyc), the Graviton 1 is 3× cheaper per run, whereas the Graviton
2 is 2.5× cheaper.

134

7.5. CONCLUSION

7.5 Conclusion

VOILA allows generating many semantically equivalent implementations of query
execution paradigms. In this chapter, VOILA was used to benchmark these imple-
mentations on a bouquet of hardware consisting not only of X86, but also PowerPC,
ARM and RISC-V machines.

The experiments suggest that the performance of query execution paradigms de-
pends on the hardware at hand (e.g. cache sizes) and structure of the query (e.g.
join heavy, many cache misses). Neither data-centric nor vectorized execution is
universally good or bad. Previously, it has been assumed that Vectorized Exe-
cution wins in join-heavy workloads [KLK+18], which is evidently not universally
true.

The trade-off between data-centric and vectorized execution can be pushed to ben-
efit data-centric through certain hardware features: (a) large caches, (b) high levels
of SMT (simultaneous multi-threading), or (c) slower cores).

Besides, the experiments have shown that ARM architectures can exhibit compa-
rable, if not better, performance (compared to state-of-the-art X86 architectures).

In summary, modern, more so future, query engines have to provide robust perfor-
mance and an increasingly diverse set of hardware (most notably X86 and ARM).
Frequently, the best solution (query execution paradigm) is – if predictable at all –
very difficult to predict on one hardware platform. In practice, an engine has to run
on a broad set of hardware and needs to cope with dynamic effects (e.g. interference
with other queries, processes etc.), which makes predicting the best paradigm even
more challenging.

Therefore, it is not inconceivable, to abandon the idea that we can predict everything
perfectly, but rather find good solutions through trial and error. The next chapter
will discuss a prototype of such an adaptive (and learning) engine.

135

7.5. CONCLUSION

136

CHAPTER 8

Adaptive Query Execution using Virtual Machines

Write a paper promising salvation,
make it a ’structured’ something or
a ’virtual’ something, or ’abstract’,
’distributed’ or ’higher-order’ or
’applicative’ and you can almost be
certain of having started a new
cult.

Edsger Dijkstra

8.1 Introduction

In the previous chapter, we noted that there is no such thing as the best query
execution paradigm, for all queries and all possible hardware combinations. If a
future query engine were to exploit performance diversity rather than falling victim
to it, it would need to synthesize different flavors at runtime and somehow find the
best flavor. With VOILA, described in Chapters 5 and 6, we have the means to
synthesize many different execution styles (flavors) from a single description.

137

8.2. BACKGROUND

In this chapter, we go one step further. We dynamically synthesize and try many
flavors, while the query is running. Our prototype, Excalibur, is based on a virtual
machine (VM) that abstracts many nasty details away (e.g. code synthesis and
interpretation) and, therefore, provides an efficient and convenient framework to
switch between different execution flavors (e.g. minimizing excessive compilation
overhead).

As the previous chapter described, it is hard to impossible to predict the best flavor
via cost models. Therefore, we try to find the best flavor via trial and error, i.e.
make a choice according to some policy and measure the actual runtime on a sample.
This approach is often also known as adaptivity or micro-adaptivity [RBZ13]. The
major challenge is that significant exploration of the design space requires significant
time. This excessive time consumption frequently makes exploration at runtime
impractical for large spaces. Note that in practice, runtime behavior might change
and points might need to be revisited.

In Excalibur, we carefully control the time spent on risky exploration by using a
budget β (typically 30% query runtime). Consequently, this leaves even less time
for exploration and makes the order in which points are explored more relevant.
Therefore, we explore different strategies to search the design space more efficiently.

8.2 Background

This section introduces preliminary concepts: The domain-specific language VOILA,
the Multi-Armed Bandit problem and the Upper Confidence Bound algorithm.

VOILA. Excalibur builds on top of the domain-specific language VOILA (Chap-
ter 5). VOILA allows describing operators in a way that exposes data-parallelism
and, thus, implicitly allows synthesizing SIMD-ized code or vectorized execution.
Using VOILA, different back-ends can generate very different code styles and query
execution paradigms (Chapter 6). In Chapter 6, We have shown that the VOILA
synthesis framework can cover a large design space.

Multi-Armed Bandits (MAB). In practice, we often have choices, but we do
not know which one is best. Instead, we want to find the best choice at runtime
(online learning). We can either explore (try new or re-try old choices) or exploit
(use the best choice found, so far). This is commonly abstracted using the MAB
problem. The MAB problem can be imagined as a row of slot machines, and we
want to maximize our possible reward by using the machine most favorable to us. To

138

8.3. EXCALIBUR

achieve this, we need to observe the distributions of all slot machines (exploration).
Once we are confident about the distributions, we can pull the lever on the most
favorable slot machine (exploitation) and pocket the rewards. The goal is to solve
this problem with a low, hopefully sublinear, regret (loss compared to the best
possible choice).

Upper Confidence Bound (UCB). One algorithm that solves MAB optimally
is the Upper Confidence Bound algorithm (UCB) [ACBF02]. UCB tends to be
an elegant and effective solution to the MAB problem with an attractive sublinear
regret. For each arm i, we define a score ucbi(T) and we always choose the arm
with the highest score, i.e. argmaxi ucbi(T), at a time-step T (number of calls to
the algorithm), For an arm i, let Ni be the number of samples collected so far, Xi

the empirical mean of rewards, and an independent constant c. The score is defined
as:

ucbi(T) =

⎧⎨⎩∞ if Ni = 0

Xi + c ∗
√︂

log(T)
Ni

otherwise
(8.1)

8.3 Excalibur

Excalibur is a system prototype1 intending to make query execution flexible &
dynamic. It allows trying and exploiting many different execution styles (flavors),
while executing the query. We now walk through its architecture in Figure 8-1.

To execute a query, its query plan is handed over to Excalibur, along with readers
that allow scanning the base tables involved in the query. From there on, Excalibur
translates the plan into its own plan representation (Low-Level Plan). In the Low-
Level Plan representation, the query is split into pipelines (Pipeline 1 and Pipeline
2) with simple operator chains inside each pipeline. These operator chains can be
and are pipelined to minimize the size of intermediates. Afterward, we expand plan
operators into code in the domain-specific language VOILA (shown for Pipeline
1). The VOILA program is used to generate byte code which can efficiently be
interpreted. This step also involves generating the required code fragments that
are invoked by the byte code. These fragments could already be cached and then
do not require compilation. After the code generation has finished, the pipeline is
evaluated by interpreting each operator in a (vectorized) iterator-based fashion, i.e.
calling a next() method that returns batches of tuples (typically 1024) produced
by the operator. Inside the next() method, the byte code interpreter calls compiled
code fragments for each byte code.

1Source code and scripts can be found under https://github.com/t1mm3/db_excalibur

139

https://github.com/t1mm3/db_excalibur

8.3. EXCALIBUR

JoinProbe

JoinG
ather

JoinC
heck

H
ashJoin

Filter

Lineitem
O

rders

Filter

P
lan

V
O

ILA
Low

-Level
P

lan

pos
=

scan_pos(morsel)
|valid

=
selvalid(pos)

LOOP
|valid:

EMIT
(a)

pos
=

scan_pos(morsel)
|valid

=
selvalid(pos)

Scan(): |pred
=

seltrue(T.A
<

42)
EMIT

(T.A)
|pred

Filter(T
):

h
=

hash(T.A)
write(HT1._hash,

h)
write(HT1.A,

T.A)

JoinB
uildW

rite(T
)

a
=

scan(orders.A,
pos)

Pipeline
1

Filter

Filter

Scan

JoinB
uildW

rite
Pipeline

1

Pipeline
2

V
O

ILA
V

irtual
M

achine

E
xcalibur

Scan

B
yte

C
ode

EndOfFlow
GotoUncond

ScanPos
GotoCond

ScanCol

TupleEmit

ScanCol
...

C
ached?

C
odeG

en

no

Extract
Fragm

ents

Trigger

Interpret

Scan

yes

Filter
JB

W
rite

Pipeline
1

next()
next()

next()

get_morsel()

adapt&&
rowsRead

>
N;

=
timeSpent

>
T

while(1)
{

}

if
(!next())
break;

C
ontroller

return
adapt

?
-1

:
morsel();

A
dapt

Explore
N

ew
Point

W
ithin

B
udget

β?
yes

B
est

Point
D

iscovered

no

C
hanges

A
pply

C
hanges

to
Plan,C

ode,
C

ode
G

eneration,Flavor
...

Trigger
A

daptation

Figure
8-1:

Excalibur
A

rchitecture.
Excalibur

uses
m

ultiple
layers

to
generate

code
and

allow
s

adaptive
re-optim

ization
based

on
runtim

e
feedback.

Instead
offullcom

pilation
and

re-com
pilation,Excalibur

allow
s

reusing
already

com
piled

fragm
ents.

140

8.3. EXCALIBUR

Instead of fully evaluating the pipeline, we can interrupt execution after a certain
number of tuples or CPU cycles. This is handled by the Controller, which triggers
the evaluation of the top-most operator (in the chain) and suspends evaluation by
choking the scan (get_morsel() returning 0 tuples). This interrupt allows modi-
fying the current execution flavor (“Trigger Adaptation” in Figure 8-1). Whether
Excalibur can explore new flavors or rather exploit the already explored points is
decided through a Budget β. If there is enough budget, new flavors are explored,
otherwise the best discovered flavor will be run. After Trigger Adaptation, changes
are applied to the VOILA byte code and execution of the pipeline is resumed. For
example, to switch to executing a query in data-centric flavor, we inline all operators
into the top-most operator, compile this into one code fragment and reconfigure the
byte code of the top operator, deactivating the other operators.

8.3.1 Execution Model

Excalibur uses two levels of relational operators: (a) high-level operators, like e.g.
HashJoin, and (b) low-level operators that encode which operations a high-level
operator, e.g. HashJoin, must perform.

High-Level operators are rather a logical construct than a part of physical query
execution. They own the state shared by the low-level operators (most notably
data structures) and provide high-level features such as progress estimation (needed
later).

Low-level operators specify the physical implementation of a corresponding high-
level operator. Each low-level operator uses the vectorized Volcano model, i.e. it is
an iterator with a next() method that returns multiple tuples stored as an array of
columnar vectors. While our low-level operators share some similarity with LOLE-
POPs [Loh88], they are different from DB2 BLU [RAB+13] or Starburst [HCL+90].
Specifically, we further decompose the join into sub-operators.

Instead of a monolithic HashJoin operator, we use a sequence of JoinProbe, JoinCheck

and JoinGather, of course after building the hash table using JoinBuild. Conse-
quently, our joins can be easily extended in the future, e.g. JoinProbe can be
replaced by using a perfect hash [BLP+14, BNE13] or see Chapter 3. Low-level
operators are the physical unit of query execution. An operator can be white-box
(expressed in our domain-specific language VOILA) or black-box, which allows in-
tegrating operators for which no representation in VOILA exists (e.g. the Output

operator that materializes the query result). White-box operators expose VOILA
code and, therefore, qualify for compilation and interpretation-compilation hybrids.

141

8.3. EXCALIBUR

Table 8.1: Byte Code instructions. Certain instructions are not strictly necessary
but exist for performance-purpose, these instructions are marked with an asterisk
(*).

Byte Code Instruction Description
GotoCond If condition == constant: Goto “line”
GotoUncond Goto “line”
EndOfFlow Signal end of stream
End End of program
Copy Copy value/vector
Emit Returns tuples from operator
ScanPos Allocates a position for reading a table
ScanCol Reads a column chunk from ScanPos
SelNum Turns position inside table into predicate
WritePos Allocate a position for writing a table
CompiledFragment Call compiled VOILA fragment
BucketInsert* (Complex) VOILA operation
SelUnion* (Complex) VOILA operation

Almost all relational operators in Excalibur are implemented using VOILA (white-
box). Notable black-box exceptions are Output, which produces the query result,
and JoinBuild, that builds the hash table of a join, after the inner relation has been
materialized (resembling the Morsel-driven parallel hash join with a shared hash
table [LBKN14]). Excalibur is an interpreter (VM) that evaluates VOILA plans,
while being able to leverage VOILA’s flexibility.

8.3.2 Interpretation

Excalibur executes query plans as block-based pull iterators (i.e. vectorized execu-
tion [BZN05]), exploiting the fact that VOILA programs can always be executed as
vectorized primitives, which provides low-latency efficient interpreted execution as
a starting point.

Vectorized Byte Code. The VOILA code is translated into an easily and effi-
ciently interpretable representation (byte code). Our byte code encodes auxiliary
operations required to execute (vectorized) VOILA code, while keeping VOILA code
mostly encapsulated in fragments. VOILA fragments are invoked via the instruction
CompiledFragment. The all supported instructions are shown in Table 8.1.

Generating Byte Code. While generating the byte code, we check for frag-
ments that need to be compiled. This could be atomic operations (e.g. adding two
columns) or complex fragments (e.g. gathering a multi-column join probe result).
For each, we generate a corresponding CompiledFragment instruction and trigger
compilation.

142

8.3. EXCALIBUR

Listing 8.1: Example JIT-ed vectorized primitive computing −x and x ∗ y. Only
the selective scalar path is required, the other paths can be omitted to decrease
compilation time.
void jit_1 (PrimArg * arg) {

int i=0;

// Deserialize inputs and outputs
int* sel = arg -> sources [0]-> first ;
int num = arg -> sources [0]-> num;
long * in_val1 = arg -> sources [1]-> first ;
long * in_val2 = arg -> sources [2]-> first ;
long * out_val1 = arg -> sinks [0]-> first ;
long * out_val2 = arg -> sinks [1]-> first ;

if (ignore_selvector (sel , num , true , 2*64 , 2)) { // optional
// Optional unrolling
for (; i+16 < num; i +=16) { /* ... */ }

for (; i<num; i++) {
out_val1 [i] = -in_val1 [i];
out_val2 [i] = in_val1 [i]* in_val2 [i];

}
} else { // Use selection vector , mandatory

// Optional unrolling
for (; i+16 < num; i +=16) { /* ... */ }

for (; i<num; i++) {
out_val1 [sel[i]] = -in_val1 [sel[i]];
out_val2 [sel[i]] = in_val1 [sel[i]]* in_val2 [sel[i]];

} } }

8.3.3 Compilation into Vectorized Primitives

VOILA fragments are compiled into machine code with LLVM [LA04], a widely used
framework for building compilers. Especially for short-running queries, compilation
is quite costly (10 − 100 ms).

Caching. Fortunately, compilation can often be omitted be caching frequently
used fragments. Especially for simple code fragments (e.g. consisting of 1-2 VOILA
operations) this method is quite effective, as small fragments can often be re-used.
Re-use can happen inside the same pipeline, query, or across queries. Essentially,
this caching mechanism approximates vectorized execution (very simple cached frag-
ment with only one operation = vectorized primitive) while still allowing complex
custom-tailored fragments.

Parallel Compilation. Besides reducing compilation time (thanks to caching),
code fragments also provide a means to parallelize compilation, even inside a single
pipeline. Code fragments are independent pieces of VOILA code that are glued
together by the surrounding byte code. Therefore, code fragments can be compiled
independently of each other, which allows parallelizing compilation.

143

8.3. EXCALIBUR

Listing 8.2: Ignore selection vector for dense predicates without filtered out tuples,
average bits per VOILA node are above a certain limit.
bool ignore_selvector (int* sel , int& num , bool can_full_eval ,

double sum_bits , double num_nodes) {
if (! num && ! can_full_eval) return false ;

double score = sum_bits / num_nodes / SCORE_DIVISOR ;
double min_size = (scope * VECTOR_SIZE) / (score + 1.0);
return num > min_size ;

}

Compiling Vectorized Primitives. We generate vectorized primitives, func-
tions that operate on columnar chunks of data. Note that data-centric compi-
lation fits into the vectorized model (e.g. Hyper uses morsels [LBKN14], table
chunks like vectors, delivered by its vectorized scan operator that decompresses
DataBlocks [LMF+16]).

The basic function template is illustrated in Listing 8.1. It iterates over the input
predicate (selection vector, which in our system always exists, and then evaluate the
VOILA code value-at-a-time. Furthermore, this generic template allows interesting
variations:

• We can choose to ignore the predicate. This, however, is not always possible
(e.g. for example operations that can raise an error), but can lead to better
SIMD performance (Chapter 3). Choosing only requires a quick density check
on the selection vector, like illustrated in Listing 8.2.

• Important code paths can be unrolled. This means splitting the loop into the
unrolled loop that processes N values (e.g. 16 using SIMD) at once and a residual
loop that processes the remainder.

• Code can be annotated to enable/disable SIMD-ization of the code, or define
different SIMD widths (e.g. triggering AVX2 instead of AVX-512 to prevent
down-clocking on some processors [Kra17, dow22]).

Later, we expand this template for specific flavors such as vectorized and data-
centric execution. Note that the performance of these variations is hard to predict.
Therefore, Excalibur will choose the best one dynamically at query runtime.

8.3.4 Code Cache

The idea is to fingerprint code fragments and look the fingerprint up in the cache.
For this cache, however, lookup performance under updates is crucial. Therefore,
we use an asynchronous eviction process that does not require write latches during
lookups.

144

8.3. EXCALIBUR

Asynchronous Eviction. Instead of replacing during lookups, we have an asyn-
chronous process that cleans up excess fragments in the cache. Therefore, during
lookups we just need to update a reference counter and a last-updated timestamp,
using atomics. This only requires a shared latch to prevent concurrent updates.

Eviction. Periodically, cleanup is triggered. We mark the N least recently used
fragments evictable. When eviction is triggered again and if they have not been
touched in between, we safely evict them.

Adapting N . Typically, we aim for a constant cache size (≤ T fragments) with a
margin for new fragments (say 10%). Let F be the current number of fragments in
the cache. To stay within the bounds, we have to evict T − F fragments. However,
we cannot guarantee that our eviction process will clean up N = T − F frag-
ments because they might have been updated/used in between (there is a time lag).
Therefore, we measure the number of fragments, we were able to evict, calculate
the eviction rate (out of X, we evicted Y) and over-allocate the number of eviction
candidates by the corresponding factor (X

Y) during the next iteration.

Footprint per Fragment. Ideally, all code fragments are cached and do not incur
JIT-overhead. Practically, however, this is not feasible. The important question is,
how many fragments can realistically be cached, i.e. what is their memory footprint.

Each code fragment can be compiled in parallel, thus LLVM requires each frag-
ment to use its own instances of LLVMContext and TargetMachine, an abstraction for
hardware-specific details. This led to a memory footprint of roughly 400 kB per
fragment, while, for simple fragments, the machine code fits in roughly 1 kB. The
extra footprint stems from LLVM which is only needed during compilation. There-
fore, after compilation is done, we can safely deallocate LLVM-related objects. This,
however, is a non-intended LLVM use-case and requires providing a custom mem-
ory manager, which it uses to store compiled machine code. After compilation is
done, we dispose the allocated LLVM compilation utilities and just keep the ma-
chine code, which is now owned by our memory manager. This pushes the footprint
of a code fragment to around 10 kB (40× smaller than the naive implementation).
This currently allows roughly 100,000 fragments in 1 GB code cache.

The footprint of cached code fragments could be improved further by sharing pages
between multiple fragments. Sharing pages, however, is non-trivial to do in a
portable manner because one needs to allocate physical pages, modify page flags
(make writable, remove writable flag and make executable), handle concurrency
and, of course, find a memory layout that satisfies the requirements of the CPU.

145

8.4. CODE GENERATION FLAVORS

8.4 Code Generation Flavors

Excalibur’s rather generic means of query execution allows very different execution
flavors. Keep in mind that there are no well-defined guidelines, rather vague rules of
thumb, to decide which execution flavor is best to execute a query (see Chapter 7).
This makes it impossible to decide the best flavor beforehand because its perfor-
mance depends on the current environment (hardware at hand, #cores used ...).
Therefore, we provide a bouquet of paradigms and choose the best flavor adaptively
at runtime. In the following, we describe two different flavors (a) atomic fragments,
resembling vectorized execution [BZN05] and (b) fused statements which is similar
to data-centric compilation [Neu11].

8.4.1 Atomic Fragments (Vectorized Execution)

Our base (and fallback) flavor is to only compile the smallest possible (indivisible =
atomic) fragments. For VOILA operators, this means that such fragments are basic
operations in VOILA (e.g. add, bucket_lookup, seltrue). Interestingly, when com-
piling atomic fragments, the resulting strategy is basically vectorized execution very
similar to MonetDB/X100 [BZN05] that became Vectorwise and later Vector. Con-
sequently, this (1) generates many small fragments that can be compiled in parallel
and can likely be re-used (2) allows efficient memory access, inherited from vector-
ized execution and (3) has good chances for micro-adaptive [RBZ13] optimizations
like full-execution by ignoring the selection vector. Since this is the default base
flavor, it is used whenever we decide to not use any other flavors, which happens
for short-running queries, or when the other flavors yield worse performance.

Specialized Implementations for Complex Operations. VOILA has two
complex operations: bucket_insert, which allocates new buckets in a hash table but
can fail, and selunion, which ORs two predicates together (in the vectorized model
concatenates two selection vectors). For these operations, we provide specialized
hard-coded implementations.

8.4.2 Fused Statements (Data-Centric)

Data-centric compilation [Neu11] is the extreme of compound primitives (or fused
expressions), as it inlines the whole pipeline into a single function. For, a static
engine with black-box operators, this inlining process is impossible as operator
borders, typically, cannot be crossed. In Excalibur, operators can be black-box,
i.e. hard-coded with one static implementation like Output (delivers query results),
or white-box, yielding VOILA code that can be analyzed, modified, inlined etc.

146

8.5. (MICRO-)ADAPTIVE EXECUTION

Note that the (performance-wise) most impactful operators (join, group-by, filter,
projection) are white-box operators, which allows us to inline them. Hence, the
presence of black-box operators breaks the inlining into multiple fragments. From
the inlined VOILA code, we can, then, generate data-centric code (Chapter 6).

8.5 (Micro-)Adaptive Execution

We use vectorized execution as our base execution flavor and, during query execu-
tion, try to further improve performance by generating different execution flavors
and observing whether they improve performance. Note that there is both a choice
of execution flavor, and granularity (which parts of the query plan to use it in).
The combination of these two choices we call execution tactic.

Exploration vs. Exploitation. During execution, we attempt two different
things: (a) find the best possible execution tactic (exploration) and (b) use the
best found tactic to improve runtime (exploitation). Consequently, to improve the
runtime, we need to spend cycles exploring potentially not very useful tactics with
no clear guarantees for success, i.e. a risky bet. In addition, we want to learn
good tactics and exploit them as much as possible. Such problems are typically
formalized as multi-armed bandits (MAB).

A naive MAB approach would be to explore all possible tactics at least once, and
then exploit the best one. Note that the set of possible tactics is gigantic, especially
since combinations of choices (query fragmentation and flavor) get flattened into
separate points in the search space (actions in the MAB formalism)2. To limit the
amount of alternative code fragments that need to be compiled and tested, we focus
on sparsely searching the design space, followed by exploiting the best point found.

8.5.1 Constraints on Adaptive Execution

Suppose, we want to improve the runtime of a query fragment, and we were given
some method to decrease its runtime by 4× (4× speedup, s = 4). If this fragment
only constitutes 50% of query runtime (f = 0.5), the overall expected speedup will

2Alternatively, our problem could be modelled as a combinatorical MAB, by skipping the
flattening and assuming that combinations of actions behave like the sum of its parts. This is a
powerful concept that allows learning, e.g. the shortest paths or rankings. Solution approaches
typically require an oracle to predict best actions [LS20], something we do not know a priori. A
notable approach is the Follow-the-Perturbed-Leader algorithm [LS20], which introduces additional
and complex tuning knobs, like well-chosen distributions for the perturbation (add random noise)
to balance exploitation and exploration.

147

8.5. (MICRO-)ADAPTIVE EXECUTION

drop to a disappointing 1.6×. Further, suppose that we find this faster fragment not
at the beginning of the query, but rather in the middle (at 50% progress, ϕ = 0.5),
then the final speedup will decrease further. In the following, we aim at finding a
sweet spot for micro-adaptive optimizations which will guide the choices made by
Excalibur.

Amdahl’s Law. We model the impact of (adaptive) choices using Amdahl’s
law [Amd67]. Normally, Amdahl’s law is used to compute the speedup of par-
allelizable computations with a sequential fraction. Here, instead of parallelizing,
we just accelerate the previously parallel fraction by a given factor.

We apply Amdahl’s law for the progress ϕ: S = (ϕ + 1−ϕ
y)−1 with y being the

speedup at the specific progress (ϕ) in the query. Then, we apply Amdahl’s law
to determine y based on improving a fraction of the query f : y = (1 − f + f

s)−1 ,
combining both yields:

S = 1
ϕ + (1 − ϕ)

(︂
1 − f + f

s

)︂ (8.2)

From Equation (8.2) we can derive that ideally we have to make good decisions (a)
early and (b) on a large portion of the pipeline.

Limits on Exploration. The problem with exploring in constant intervals, as e.g.
proposed by Raducanu et al. [RBZ13], is that towards the end of the query, it is still
seeking better alternatives (exploring). Even though, their potential benefit cannot
yield a significant improvement anymore (because it is found late).

To mitigate this exploration problem, we define a specific exploration budget (30%
query runtime). Specifying a budget has two major advantages: (1) it forces most
of the exploration to be done at the beginning of the pipeline (greedily) and (2) it
limits the negative impact of over-exploring. Using a budget makes adaptivity a
favorable asymmetric bet (limited loss, unbounded gain).

When running a query, we estimate the progress of the current pipeline (by tracking
the data source). By estimating the progress and measuring the time spent for
achieving the progress, we estimate the absolute budget used for exploration (in
cycles)3: Absolute budget B = (t + ϕ

t ∗ (1 − ϕ)) ∗ β with relative budget β (typically
0.3 = 30% of query time), time t and progress p ∈ [0, 1].

3These estimation techniques have previously been used by Kohn et al. [KLN18] and Gub-
ner [Gub14].

148

8.5. (MICRO-)ADAPTIVE EXECUTION

Table 8.2: Mutation nodes. A sequence of such nodes allows describing a specific
point in the design space.

Mutation Description
JitFragm(begin, end, flavorMod) Compile fragment between begin and end,

apply given flavorMod
SetScope(begin, end, flavorMod) Set flavorMod for statements and

expressions between begin and end
Inline() Inline all VOILA operators
SetDefault(flavorMod) Set default flavorMod for the whole pipeline
SetConf(vectorSize, fullEval) Set vector size and

different full evaluation threshold points
BloomFilter(op) Enable Bloom filter [Blo70, GTLB19] at operator op
SwapOps(a, b) Swap operators a and b

If exploration (and compilation) exceeds this budget, exploration is canceled, and
the residual budget is returned. Note, in case the query decelerates (starts running
suboptimally), the budget will increase, hence giving opportunity for more explo-
ration. Further, we stop generating new tactics after 40% progress as we do not
expect significant overall/net performance gains afterward.

Other Applications. Equation (8.2) has many applications. For example, it
can be applied to offloading work to accelerators. When an accelerator improves
performance of an operation covering 40% of query performance by 10× and is
triggered at the start, the best overall improvement we can possibly expect is a
meager 1.5×. If our accelerator improves performance by 100×, all else equal, we
can maximally expect a rather disappointing 1.7×.

8.5.2 Exploitation

After the exploration budget is consumed, or the space is fully explored, our adap-
tive framework switches to exploiting the best points found so far. We choose the
point with the lowest cost (CPU cycles per input tuple). However, during exploita-
tion, we still maintain our performance metrics, i.e. if performance of the current
best choice degrades, we can still retry the already generated tactics.

8.5.3 Encoding the Design Space

Excalibur allows switching between tactics (i.e. different flavors applied to differ-
ent fragments). Each tactic is a point in the design space. Here we discuss how
Excalibur encodes points in that space.

Mutation Sequences. We define a point in the design space as a sequence of
mutations that are created through rules. Currently, we have mutation nodes for

149

8.5. (MICRO-)ADAPTIVE EXECUTION

Table 8.3: Rules create and extend mutation sequences.

Rule Description
JitBiggestFragment(flavorMod, JIT compiles the biggest fragment with

reqInline) flavorMod & introduces Inline before
when reqInline is true

ReorderFilterBySel Modifies plan to order filters by selectivity.
BloomFilterMostSelJoin Introduces BloomFilter into most

selective hash join.
SetScopeFlavor(flavorMod) Find most expensive scope,

introduces SetScope
SetScopeFlavorSel(flavorMod) Like SetScopeFlavor, but scope must include

VOILA’s SelTrue, SelFalse
SetScopeFlavorMem(flavorMod) Like SetScopeFlavor, but scope must include

VOILA’s BucketLookup, BucketNext,
BucketScatter, BucketGather

SetDefaultFlavor(flavorMod) Introduces SetDefault, if flavorMod
is not already set.

SetConfig(vectorSize, fullEval, Introduces SetConf, if not already set.
scoreDiv, simdOpts)

(a) plan changes, (b) local configuration changes, (c) fragment JIT-ting and (d)
flavor specifications. The specific nodes are listed in Table 8.2. Additionally, mu-
tations can also have parameters. Most notably, flavorMod defines: specific unroll
factors and SIMD widths for selective and, similarly, for the non-selective path of
the vectorized primitive. Additionally, it allows using predicated execution using
techniques described by Crotty et al. [CGK20] or using conditional moves (cmov).

For instance, we can choose to combine SwapOps and JitFragm. SwapOps first modifies
the plan and, afterward, JitFragm would JIT-compile a specific fragment. Full data-
centric execution can be expressed using JitFragm by selecting the whole pipeline.

Rule-based Generation. During exploration, we extend existing or create new
mutation sequences (i.e. extending empty sequence). Table 8.3 shows the rule
templates currently used in Excalibur. In practice, we expand the rule templates
with common values for flavor and configurations. Rule-based generation provides
two advantages: (a) it is easily extensible and (b) we can iteratively expand the
design space by applying rules onto a previous mutation sequence. Considering
that over time the number of rules will likely grow, the design space will grow
exponentially (assuming rules are not mutually exclusive). The rules in Table 8.3
were chosen to provide a minimal set of useful optimizations without inflating the
design space too much. Still, materializing this large space is not practical due to
compilation time and code-cache space overhead.

Therefore, how we explore the space matters.

150

8.6. EXPLORATION STRATEGIES

8.6 Exploration Strategies

In this section, we present different exploration strategies, reaching from a simple
randomized search, to hill-climbing with hard-coded heuristics and Monte Carlo
Tree Search (MCTS).

8.6.1 Randomized Exploration (rand)

One could explore the space using random choices, and there are good reasons
for this: randomized search is relatively easy to implement, can fully explore the
space and can provide a “good” coverage of the space [GPK94]. But for gigantic
spaces, randomized exploration might easily get “lost in the space” (i.e. not focus on
interesting sub-spaces) and can take extremely long until the space is fully explored.
This, while the budget of a short running query can only afford running a limited
number of tactics.

8.6.2 Hard-Coded Heuristic (heur)

An intuitive approach is to try what database architects believe are good choices.
This further makes the assumption that simpler choices, with shorter mutation
sequences, are better (similar to Occam’s razor). Therefore, we define a list of rules
to apply and try:

1. Reorder filters by increasing selectivity
2. Introduce Bloom filter for selective joins
3. Heuristically JIT fragments:

• If SelTrue/SelFalse and σ < 95% and σ > 5%: Do not cross
• If MemAccess and Cyc/Tup > N1: Do not cross

4. Try fully data-centric
5. Try different vector sizes
6. Give up: Exploit

Clearly, iteratively improving an execution tactic by applying these rules in order
reflects its creator’s biases and potentially ignores large parts of the search space.
Moreover, when new generator rules are added, this approach needs to be main-
tained (extended and re-evaluated) which is a recurring time-consuming process.
Note that the other strategies (randomized and, the following, Monte Carlo Tree
Search) do not require hard-coded decisions and, hence, are less influenced by cre-
ator’s biases and are maintenance-free.

151

8.6. EXPLORATION STRATEGIES

8.6.3 Monte Carlo Tree Search (MCTS)

When rethinking our approach of exploring large spaces, we can draw analogies to
Artificial Intelligence (AI) used in complex games (e.g. chess or go). For an AI
to make the next choice, it commonly first builds a tree (state/search tree) that
represents all possible choices made by players, multiple steps ahead. For complex
games, like chess, these trees quickly become very (exponentially) large. One of
the relatively new approaches, e.g. used in AlphaGo alongside Neural Networks, is
Monte Carlo Tree Search (MCTS) [SHM+16].

Generic MCTS is a randomized approach to search a tree. It starts with exploring
parts of the tree and, will, given enough time, eventually have fully explored the
tree. MCTS has 4 phases which are repeated, until typically a time limit is reached:

1. Selection: A node will be selected using some policy.
2. Simulation: Multiple paths from the selected node to the leaves are simulated.
3. Node Expansion: The selected node is expanded.
4. Back Propagation: The information from the simulation is propagated back

towards the root.

The Selection phase has significant impact on which areas of the large tree are ex-
plored. Ideally, these should be the most important areas. Suppose, we had some
measure of reward, then we could visit areas with the highest reward first (exploita-
tion). This, however, should be balanced with more risky exploration. To bal-
ance exploration and exploitation with some measure of reward is a classical MAB
problem, with arms corresponding to child nodes. A problem that can be solved
optimally using the Upper Confidence Bound algorithm (UCB, Equation (8.1)).

UCB applied to trees (UCT). For trees, or MCTS in specific, there is a variant
of UCB, called UCT [KS06]. Until a given point in time, the following variables
specific historical metrics collected so far: Let Xi be the empirical mean (of rewards)
for child node i, c be some constant, t be the number of samples in the parent node
and s be the number of samples of the current node:

ucti = Xi + c ∗
√︃

t

s

During the Selection phase, this score is computed for each potential child node,
then the child node with the highest score is chosen. This is repeated until a leaf is
found. Later, during Back Propagation, we update the metrics (reward and number
of samples) for our selected node and all nodes on the path towards the root.

152

8.6. EXPLORATION STRATEGIES

Application to our Exploration Problem. The application of MCTS to our
problem, efficiently exploring the design space, is relatively straightforward. Each
mutation node becomes a node in the MCTS. We adapt the Simulation and Node
Expansion steps: during Simulation, we execute the mutation sequences that result
from the path in the tree and collect runtime statistics. Then, we expand an existing
node simply by applying our generator rules. In our case, MCTS brings two major
advantages: (1) MCTS almost never evaluates the full search space, unless given
a huge exploration budget. Instead, it focuses on promising sub-spaces, which is
a crucial advantage for exploring large spaces. (2) Assuming the same pipeline is
run multiple times, we can extend the existing tree in the new run (i.e. learning).
Especially in a cold run, our tree does not yet contain useful information (many
UCT scores are ∞ i.e. the highest possible score). In the following, we aim at
further improving the order in which we traverse the search space by heuristics for
breaking ties between UCT scores.

Propagating Information across Branches. Suppose we already have partial
knowledge, e.g. we know that whole-pipeline data-centric works well on this plat-
form. But that knowledge is part of a different branch of the tree, one we have
not traversed yet during Selection. Consequently, we would have to re-discover
that data-centric execution is beneficial. To ease the burden of re-discovering good
choices, we remember rewards and #samples for all mutations (many tree nodes
can encode a mutation in different branches, also tree nodes can encode mutation
sequences). This allows us to formulate this guessing problem as a MAB, but this
time for mutations (and mutation sequences), rather than MCTS tree nodes. This
steers the exploration into the direction with the highest confidence (using UCB).
In practice, this turns out to work quite well, because on the first level of the tree
(i.e. close to the root), we likely discover most possible decisions.

Maximum Distance. If, we are, however, at the very beginning of building the
tree, we do not have such knowledge yet. In this case, we try to steer away from
already explored nodes (or clusters). Therefore, given a set of already explored
siblings (children of the same parent node), we should preferably explore the most
dissimilar point next. We define the similarity of two nodes x and y as 1 − d(x, y)
according to a distance function d. Using d, we select the nodes with the maximal
distance to already explored nodes, to break ties. If there are multiple such nodes,
we chose randomly.

Gower Distance. Our choice chains (mutation sequences) are rather complex
objects, composed of categorical integers, quantitative integers and lists thereof.

153

8.6. EXPLORATION STRATEGIES

Therefore, we use the Gower distance [Gow71], a distance function able to handle
complex objects. It is defined as the arithmetic mean of its components K:

d(x, y) = 1
|K|

∑︂
k∈K

d′(x, y, k) (8.3)

Each component has slightly different formula (d′) depending on its type. We only
describe quantitative (d′

q) and categorical components d′
c, other types are defined

as well but are not relevant here.

For a quantitative component k and its range rk, we define

d′
q(x, y, k) := |xk − yk|

rk

For a categorical component k, we define

d′
c(x, y, k) :=

⎧⎨⎩1 if xk ̸= yk

0 otherwise

Since we only need to measure the distance between sibling nodes in the tree, we can
directly apply Equation (8.3) for two nodes x and y. Note that to find the node(s)
with maximal distance, we need to compute the pair-wise distances between all
siblings. Thus, for trees with many siblings, computing the distance can become
costly. The trees we create are typically not very wide (nodes have roughly up to
40 siblings). When extending the mutation nodes and mutation rules over time,
trees widen. In this case, we use a random sample of sibling nodes to compute the
distances.

8.6.4 Remembering the Past

The proposed exploration strategies have to re-explore the search space before any
positive changes can be done, for each query. Figure 8-2a illustrates this for TPC-H
Q1. One can increase the Risk Budget to explore a bigger part of the space, but
consequently, overall query performance suffers as precious CPU cycles are wasted:

In longer-running workloads, we can exploit past knowledge.

While we cannot fully rely on the accuracy of the past (underlying data may have
changed, causing different performance), we should not fully disregard past knowl-
edge.

154

8.7. EXPERIMENTAL EVALUATION

Quick Start - Remembering Good Points. After exploring a pipeline, or
query, we can remember the best choices. On the next iteration of the query, we
can start checking whether these choices are still the best. While this delays the
regular exploration process by a few steps, it directly feeds good points back into
the exploration process. We call this Quick Start.

We implemented Quick Start by generating a fingerprint of the pipeline and map-
ping the fingerprint to the historic data. The historic data contains a mapping
from the (design space) point to a histogram of runtimes. Both mappings can grow
considerable, if they grew over a certain threshold, we use sampling to determine
the surviving data points. Our fingerprints contain operator types as well operator
properties (e.g. global aggregation, key join). An improved mapping could also in-
clude performance information (e.g. pipeline throughput tuples/cycle, selectivities)
or system state (e.g. #threads used). Currently, we use an exact mapping between
fingerprint and historical data. But, especially, when integrating performance in-
formation into the fingerprint, a best-effort match would be more desirable.

Incremental Monte Carlo Tree Search (MCTS). MCTS has the convenient
property that we can continue building the tree with following runs of the same
query. Consequentially, MCTS can incrementally learn more about the design space,
iteration by iteration. The challenge is to identify the same pipeline, for which we
use the same fingerprinting scheme as for Quick Start.

8.7 Experimental Evaluation

In this section, we provide a compact experimental evaluation of the Excalibur VM,
which we implemented in C++. For each operator, it first generates VOILA code
(Chapter 5, which it then translates into LLVM IR using a particular flavor; and
then into machine code on-the-fly (using LLVM’s C++ API). The VM supports
multiple adaptive decisions (presented in Table 8.2) and a bouquet of exploration
strategies (discussed in Section 8.8.6).

Hardware. In small-scale experiments, scale factor 50 and below, we used a dual-
socket Intel Xeon Gold 6126 with 24 SMT cores (12 physical cores) and 19.25 MB L3
cache each. The system is equipped with 187 GB of main memory. For large-scale
experiments with scale factors ≥ 100, the previous system did not have enough
main memory. Therefore, for large-scale experiments, we used an (older) quad-
socket Xeon E5-4657L v2 with 96 SMT cores (48 “real” cores) in total, 30 MB L3
cache per chip and a total of 1 TB main memory.

155

8.7. EXPERIMENTAL EVALUATION

Table 8.4: Excalibur often significantly outperforms other systems optimized for
analytics (TPC-H SF50, multi-threaded).

Name Runtime (ms)
Q1 Q3 Q6 Q9

Umbra [NF20] 287 (1.5×) 326 (0.9×) 91 (1.8×) 854 (1.2×)
DuckDB [dud] 1325 (6.9×) 2338 (6.7×) 341 (6.6×) 15306 (21.0×)
MonetDB [IGN+12] 5488 (28.6×) 1089 (3.1×) 190 (3.7×) 1178 (1.6×)
Excalibur (heur) 192 349 52 730

Table 8.5: Compared to handwritten & optimized implementations, Excalibur’s
implementation of vectorized & data-centric execution still “leaves room for im-
provement”.

Name Runtime (ms)
Q1 Q3 Q6 Q9

Vectorized Execution
Tectorwise [KLK+18] 248 (1.0×) 294 (0.7×) 66 (1.3×) 793 (0.9×)
Excalibur (vec) 225 394 49 917
Data-Centric Execution
Typer [KLK+18] 137 (0.8×) 437 (0.8×) 73 (1.2×) 1193 (0.9×)
Excalibur (dc) 163 541 61 1337
Overall
Tectorwise [KLK+18] 248 (1.3×) 294 (0.8×) 66 (1.3×) 793 (1.1×)
Typer [KLK+18] 137 (0.7×) 437 (1.3×) 73 (1.4×) 1193 (1.6×)
Excalibur (heur) 192 349 52 730

Structure. First, we compare Excalibur to other state-of-the-art systems as well
as handwritten implementations. Then, we analyze the impact of the Risk Budget
onto finding possible improvements and, consequently, performance. Afterward, we
compare the different exploration strategies on the TPC-H data set and investigate
the adaptation regarding various parameter values in TPC-H Q6. Then we investi-
gate the impact of the code cache and, lastly, show the adaptation over the runtime
of a query.

8.7.1 State-of-the-Art Competitors vs. Excalibur

To judge the performance of Excalibur on a relative as well as absolute level, we
compare it to state-of-art systems and handwritten implementations. We selected
a diverse set of queries: TPC-H Q1, Q3, Q6 and Q9. We ran these queries against
the TPC-H data set with scale factor 50 and used all available hardware threads.

Systems. First, we compare to systems optimized for analytical performance. In
particular, we chose the well-known state-of-the-art systems. This includes the

156

8.7. EXPERIMENTAL EVALUATION

5% 10% 20% 30% 50%
0.0

0.5

1.0

1.5

Ti
m

e
(s

)

(a) Naive Exploration: β must be high
enough to discover good choices, but low
enough to not waste too much time.

5% 10% 20% 30% 50%

vectorized
data-centric
adapt (heur)

adapt (rand)
adapt (mcts)

(b) With Quick Start, we already have a
good guess on the best flavor. Thus, we
can lower β.

Figure 8-2: Impact of Risk Budget β

open-source systems MonetDB [IGN+12], featuring classical columnar execution,
and, the vectorized system, DuckDB [dud]. In addition, we compare to the data-
centric system Umbra [NF20] which uses a simple VM-based approach to dynami-
cally switch between different JIT-compiled flavors [KLN21]. The results are sum-
marized in Table 8.4. We can see that Excalibur outperforms the three other systems
on most queries, as none of the fixed execution strategies (column-at-a-time, data-
centric, vectorized) dominates across all queries and Excalibur adaptively finds a
good strategy and the code generated using VOILA has competitive raw perfor-
mance.

Handwritten Implementations. To further delve in raw performance, we com-
pare with the hand-optimized implementations of state-of-the-art query execution
paradigms by Kersten et al. [KLK+18]: Typer, an instance of data-centric compi-
lation [Neu11] and Tectorwise, an implementation of vectorized execution [BZN05].
Both, Typer and Tectorwise, perform roughly on par with the system that pio-
neered its respective paradigms Hyper and Vectorwise [KLK+18]. Table 8.5 shows
the results. Most queries perform roughly on par. However, we noticed that the
implementations of Excalibur are slightly slower. Most notably, the data-centric
implementation of Q1, where LLVM “optimizes” our data-centric code by, instead
of merging branches, replaces them with conditional move instructions (cmov).

8.7.2 Impact of Risk Budget

In this experiment, we measure the effect the Risk Budget, the budget for adaptive
exploration, has on overall performance. We chose a relatively simple query, TPC-H
Q1 (on SF10, single-threaded), where the best execution paradigms currently known

157

8.7. EXPERIMENTAL EVALUATION

are data-centric, or variations thereof. Consequently, our system has to switch to an
entirely different execution paradigm, which first has to be discovered. Here, we dif-
ferentiate between non-learning exploration strategies (naive exploration), without
knowledge of the past, and learning strategies, able to leverage past knowledge.

Naive Exploration. Figure 8-2a visualizes impact of varying Risk Budgets on
overall query performance for non-learning exploration strategies. We can see that
there is no clear optimal budget, and it depends on the exploration strategy: We
need a minimum budget to be able to discover a reasonably good solution, but using
too much is counter-productive. For large search spaces, it is challenging to adapt
to the better flavor in time, especially with a low budget.

Learning Exploration. Using Quick Start, we remember good points and, in
the next run, explore them early. Figure 8-2b shows that using Quick Start allows
lowering the Risk Budget needed to find good points. For example, using the
MCTS strategy, it could be lowered to 5% whereas without learning, even with a
Risk Budget of 50% we were not likely to discover good points.

8.7.3 Various Scale Factors & Multi-Threading

Analytical queries tend to behave differently with (a) varying data sizes as well
as (b) with/without parallelism (i.e. multi-threading). Larger tables significantly
impact query performance, e.g. hash tables grow bigger leading to increased memory
access cost. Similarly, parallelism also causes different performance characteristics.
When running using one core, that core can consume most of the system’s memory
bandwidth. On the other hand, when using all available cores, memory bandwidth
has to be shared between them, which leads to higher memory access cost on each
core (more cycles spent on memory accesses/waiting for memory locally). Since,
these factors impact performance, it is reasonable to assume they can also impact
the best flavor of a query. Therefore, we experiment on different scale factors of the
TPC-H data set.

Medium-Scale Multi-Threaded. We start with a multi-threaded experiment on
scale factor 50. The resulting runtimes are visualized in Figure 8-3. We see that
there is significant performance diversity between the data-centric and vectorized
flavors, most notably in Q9 and Q18, but less extreme also in Q1 and Q3. It is visible
that Excalibur can adapt to the best flavor, depending on the exploration strategy
used. Notably, adaptive strategies can beat static flavors (e.g. on Q9 heuristic
beats vectorized and data-centric leading to roughly 2× improvement). Usually, the
heuristic strategy (heur) behaves best thanks to the relatively small space explored

158

8.7. EXPERIMENTAL EVALUATION

q1 q3 q4 q6 q9 q10 q12 q18
0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
(m

s)

vectorized
data-centric
adapt (heur)

adapt (rand)
adapt (mcts)

Figure 8-3: On medium-sized data sets, Excalibur can adapt to the best flavors
(TPC-H SF50, multi-threaded).

q1 q3 q4 q6 q9 q10 q12 q18
0

10

20

30

40

50

Ti
m

e
(s

)

vectorized
data-centric
adapt (heur)

adapt (rand)
adapt (mcts)

Figure 8-4: On the older hardware platform used for the larger scale, the difference
between data-centric and vectorized execution blurs. The extra execution time does
allow mcts to consistently beat heur (TPC-H SF300, multi-threaded).

(certain hard-coded points), but is closely followed by the Monte Carlo Tree Search-
based strategy (mcts). Less elaborate strategies (i.e. the randomized approach
rand) tend to perform worse than MCTS, this is due to (a) the learning nature,
trees can be extended over multiple runs, and (b) better exploration behavior,
as good candidate subtrees more likely to be re-visited. In these multi-threaded
experiments, the absolute budget is relatively low (high throughput, queries run
quickly), and thus exploration strategies do not have much time to discover good
points.

Large-Scale Multi-Threaded. Large data sets, however, give Excalibur more
time for exploration, thanks to the higher query runtime. Thus, we ran the same
queries on a roughly 6× bigger data set. Figure 8-4 shows the resulting runtimes.
The underlying hardware has more main memory and cores, but the older CPU

159

8.7. EXPERIMENTAL EVALUATION

1 4 9
DISCOUNT

0

250

500

750

1000

1250

Ti
m

e
(m

s)

vectorized
data-centric

adapt (h)

(a) YEAR=1999, QUANTITY=1

1 4 9
DISCOUNT

0

250

500

750

1000

1250

Ti
m

e
(m

s)

(b) YEAR=1992, QUANTITY=1

Figure 8-5: Adaptive execution beats static on Q6 with varying parameters. Values
for DISCOUNT have been multiplied by 100 (i.e. 0.01 becomes 1). (TPC-H SF300,
multi-threaded)

means queries have relatively higher runtime and performance of flavors behaves
differently. But also here Excalibur adapts to the best flavor. The heuristic explo-
ration is now consistently outperformed by the MCTS strategy: thanks to signif-
icantly higher query runtime, the absolute risk budget is higher (proportional to
query runtime) and allows exploring more points in the design space.

8.7.4 Adaptation to Varying Query Parameters

Especially in real-world queries, cardinalities are extremely challenging to predict
and frequently wrong by orders of magnitude [LGM+15]. One possible solution is
to use real-life observed metrics to optimize the query at runtime (i.e. adaptivity)
by e.g. re-ordering filters. This is (1) challenging for JIT-compiling systems, as
it would require expensive re-compilation and (2) affects the best flavor. There-
fore, we experiment how our JIT-compiling system Excalibur adapts to changing
selectivities. In particular, we evaluate TPC-H Q6 with different parameters:
SELECT SUM(l_extendedprice * l_discount) AS revenue FROM lineitem
WHERE l_shipdate >= DATE ’[DATE]’ AND l_quantity < [QUANTITY]

AND l_shipdate < DATE ’[DATE]’ + INTERVAL ’1’ YEAR
AND l_discount BETWEEN [DISCOUNT] - 0.01 AND [DISCOUNT] + 0.01

Different parameter choices consequently lead to different selectivities in each of the
WHERE clauses. For simplicity, we chose the DATE to start 01-01 (January 1st) in a
specific year and from hereon only specify the YEAR. Figure 8-5 shows our results.
We observe that full vectorized execution often is the best tactic, beating full data-
centric execution. However, adaptive execution using the heuristic search strategy
can identify this: it generally is on par with the best static tactic, and in Figure 8-5b
even beats it.

160

8.7. EXPERIMENTAL EVALUATION

Table 8.6: Runtime of smaller scale factors is significantly affected by compilation
latency, which can be eased using a code cache or using parallelism. Impact of code
cache on query runtime for TPC-H SF0.1 without adaptive execution.

Cache Size Runtime (s)
(#fragments) 1 Thread 8 Threads

Q1 Q9 Q18 Q1 Q9 Q18
0 29.1 54.6 59.0 5.1 (6×) 10.6 (5×) 11.2 (5×)
8 13.9 (2×) 29.6 (2×) 28.8 (2×) 2.9 (10×) 6.4 (9×) 7.7 (8×)

16 11.1 (3×) 25.9 (2×) 25.5 (2×) 2.6 (11×) 6.7 (8×) 6.0 (10×)
32 4.5 (6×) 19.3 (3×) 19.1 (3×) 1.8 (16×) 5.3 (10×) 4.8 (12×)
64 1.1 (27×) 6.0 (9×) 6.0 (10×) 0.4 (69×) 2.1 (26×) 2.3 (25×)

128 1.1 (26×) 1.9 (28×) 2.0 (30×) 0.4 (68×) 0.8 (68×) 0.9 (68×)
1024 1.1 (26×) 2.0 (28×) 2.0 (30×) 0.4 (72×) 0.8 (68×) 0.8 (74×)

16384 1.1 (26×) 2.0 (28×) 2.0 (30×) 0.4 (68×) 0.8 (68×) 0.8 (73×)

8.7.5 Code Cache

For short-running queries, compilation latency tends to be a major bottleneck. In
our model, many fragments can be cached, thus reducing compilation latency. In the
following, we investigate the impact of the code cache’s size on the query runtime.
This size refers to the number of fragments stored. 0 refers to the code cache being
disabled. Table 8.6 shows the results.

General Observations. We observed that with increasing the size of the code
cache, query runtime improves. For simple queries, like Q1, with 32 fragments
cached, we can improve the runtime by 6×. The plateau is reached at about 64
cached fragments, where the runtime is roughly 26× faster than without the code
cache. More complex queries, like Q18, contain more code fragments and, there-
fore, require larger code caches. In case of Q18, a code cache size of around 128
fragments captures all code fragments at that point, runtime is roughly 30× faster
than without the code cache.

Multi-Threaded Compilation. If we compare single-threaded execution (mostly
compilation time on SF0.1) against multi-threaded, we see that compilation time
improves significantly (5 − 6×). Unfortunately, compilation does not seem to scale
linearly. When compiling code fragments concurrently, we do not introduce any
additional locking (besides checking the code cache, reserving an entry in the cache
and the execution pipeline waiting until compilation is complete). Thus, we suspect
the additional overhead must come from LLVM.

High Compilation Time without Code Cache. It can be seen that without
code cache (size 0), the initial compilation time is extremely high as all vector-

161

8.7. EXPERIMENTAL EVALUATION

ized primitives (code fragments) need to be generated. This has multiple reasons:
Machine Code generation in Excalibur is not optimized: We generate relatively
straightforward LLVM IR from VOILA and rely on compiler optimizations (like
auto-vectorization/SIMD-zation, and others commonly included in -O3) afterward.
This can, of course, be improved. For example, we could directly emit SIMD-ized
code, i.e. skipping compiler auto-vectorization. We consider optimizing query com-
pilation latency a very relevant, yet rather orthogonal challenge for our research into
the possibility and benefits of an adaptive fine-grained runtime exploration of the
execution strategy search space. Thus, we expect low-latency JIT query compilation
techniques pioneered in other code-generating systems, most notably Hyper [Neu11]
and Umbra [NF20] (both regrettably not in open source), to be beneficial for Excal-
ibur; e.g. better register allocation [KLN18], directly emitting assembly [KLN21],
avoiding certain combinations of optimizations [Neu11]. Improvements in compila-
tion latency will be even more impactful in Excalibur than Hyper and Umbra, as we
generate multiple alternative code fragments during execution. This currently also
leads to additional setup and tear-down costs (LLVMContext and TargetMachine).

8.7.6 Adaptation over Query Runtime

Over the runtime of a query, Excalibur tries to find better execution tactics. To
highlight this adaptive behavior, we visualize the execution traces as measured by
Excalibur without Quick Start. If a pipeline has less than 10 samples, we omit it in
the plot. Note that the x-axis shows query progress rather than the absolute time,
consequently all pipelines have the same length (from 0% to 100%).

Q1. The results for Q1 are visualized in Figure 8-6a. Both exploration strategies,
heuristic and MCTS, start at around 60 cycles/row, and from there on quickly
choose better flavors. Unsurprisingly, we can see that with the hard-coded heuristic
(heur) strategy more quickly find a faster flavor. The reasons are that (a) the
heuristic is heavily biased and (b) only explores a rather small space. The other
strategy (mcts) explores a significantly larger space and is, in this time frame, unable
to find a flavor faster than 45 cycles/row.

Q12. The results for Q12 are visualized in Figure 8-6b. Again, the heuristic tends
to outperform. In the first pipeline P0, it finds a faster flavor (30 vs. 100 cycles/row
initially). But it is closely tracked by mcts. In the second pipeline in the plot (P2),
the heuristic outperforms by a wider margin (20 vs. 70 cycles/row initially). Also
here, mcts tends to find better flavors (40 cycles/row) but is, due to the large search
space, unlikely to find the winning flavor in the time frame.

162

8.8. CONCLUSION

0 25 50 75
Query Progress (%) in each Pipeline

0

20

40

60

Cy
cle

s/
Ro

w

P0 (heur)
P0 (mcts)

(a) Q1

0 25 50 75 0 25 50 75
Query Progress (%) in each Pipeline

0

20

40

60

80

100

Cy
cle

s/
Ro

w

P0 (heur)
P0 (mcts)

P2 (heur)
P2 (mcts)

(b) Q12

Figure 8-6: Over time, different flavors are tried and adapted. Pi denotes pipeline
i. (TPC-H SF50, single-threaded).

8.8 Conclusion

This chapter discussed how a virtual machine (VM) can automatically tailor the
implementation of a query to the underlying hardware. Most notably, this VM did
(micro-)adaptively find “good” implementations while running the query and, thus,
did not rely on complex and fragile cost models.

System Architecture. Essentially, we built a vectorized engine prototype (Ex-
calibur) augmented with white-box operators, where each operator is implemented
in VOILA (see Chapter 5). Queries are executed pipeline per pipeline. For each
pipeline, Excalibur generates all code fragments (“primitives”) required for vector-
ized execution. Afterward, it executes the pipeline, first in a vectorized fashion and
later with different execution styles (e.g. data-centric [Neu11]).

To generate the different styles, Excalibur features a flexible code generator emitting
LLVM IR, which LLVM turns into optimized machine code. Since code generation
is rather time-consuming, Excalibur caches frequently used code fragments.

Exploration Strategy. Typically, micro-adaptive approaches rely on randomized
exploration of the design space to discover “good” points to be exploited. Since
the possible design space is large for non-trivial queries (and gigantic for complex
queries) such a VM requires a more efficient exploration strategy. The most naive
way is to implement a heuristic by hand, which arguably will be biased towards
specific points. Thus, this hard-coded heuristic will only late, or not at all, visit
unfavorable points, no matter whether their performance is good or bad.

Monte Carlo Tree Search (MCTS). Therefore, we proposed to adapt Monte
Carlo Tree Search to this problem because MCTS (a) guarantees full exploration of

163

8.8. CONCLUSION

the space (given unlimited time), (b) allows to abort exploration at any time and
(c) features adaptive exploration (branches with better points are preferred).

With limited runtime (i.e. not extremely long-running queries), there are usually not
enough iterations through the MCTS to provide enough information for adaptivity
to trigger (i.e. lack of samples). Thus, MCTS explores, in an arguably undefined
order. In that case, we propose heuristics to gather more information:

• We propagate information across branches. Often similar choices reflect sim-
ilar performance (arguably, biased). Therefore, we try to observe how basic
choices perform and prefer applying better-performing choices.

• We use the distance between different points to determine the next points to
be explored, i.e. we look for points with the highest distance.

Still, for the more complex queries we evaluated, the search space was not fully
explored. This was mainly due to a lack of time spent on exploration. Thus, we
propose to utilize knowledge gained from past runs of the same query (i.e. same
plan of the pipeline). In particular, we propose to (a) remember the best point
found in the previous runs (Quick Start) and (b) extend the MCTS over multiple
runs of the query (i.e. Learning).

164

CHAPTER 9

Conclusion & Future Work

Hindsight is not only clearer than
perception-in-the-moment but also
unfair to those who actually lived
through the moment.

Edwin S. Shneidman

9.1 Contributions

Let us briefly recap the research questions defined in Section 1.1.1:

1. How far can query plans be optimized to the specific instance?
2. How can query engines exploit increasingly heterogeneous modern hardware?

The contributions to answer these questions are summarized below.

165

9.1. CONTRIBUTIONS

9.1.1 Exploring the Design Space of Q1

In Chapter 3, we explored the design space of TPC-H Q1. We asked: How would a
human implement Q1, knowing data distributions, cardinalities, ...? As an answer,
we explored the design space and developed two techniques: Compact Data Types
and In-Register Aggregation.

Compact Data Types. Since the value ranges of columns are limited, we can
shrink data types (e.g. shrink 64-bit to 16-bit integer) to tightly represent data,
rather than using the user-supplied schema. This improves the performance of
arithmetic, due to better exploitation of SIMD (4× smaller data type fits 4× more
data into the same SIMD register).

In-Register Aggregation. The number of groups is rather low (4). For low num-
bers of groups, we developed a special group-by technique that re-orders the data
on-the-fly such that aggregates can be computed in an ordered fashion (ordered
by group, within a vector/table chunk). The re-ordering (partial shuffle) is not
extremely cheap. However, the improvements gained from the more efficient aggre-
gation, which now happens in-register (no repeated loads and stores to memory),
more than compensates for the overhead introduced by re-ordering (in case of Q1).

Summary. Both techniques are one step further towards instance-specific opti-
mizations, while still being general enough to apply to a wider class of queries.
Unfortunately, time has shown that they were (and are) not perfectly tailored to
the query and, thus, did not deliver optimal performance: Later Nowakiewicz et
al. [NBH+18] found that the performance of group-by/aggregation can be further
improved via JIT compilation and exploiting the very low number of groups). Al-
ternatively, the runtime can be improved further, when execution can be offloaded
to the GPU (i.e. CPU and GPU work together on the query) [TGR+18].

9.1.2 Compressing Hash Tables & Strings

In Chapter 4, we explored fast and efficient methods for compressing hash tables
to speed up query processing. We proposed Prefix-Guided Null Suppression, Opti-
mistic Splitting and the Unique Strings Self-aligned Region (USSR).

Prefix-Guided Null Suppression. Compressing hash tables requires a compres-
sion method that allows fast random access to specific rows. Prefix-Guided Null
Suppression is one possible method. To allow fast access, it (a) compresses rows
separately, but with one common layout and (b) each value (attribute) is bit-packed

166

9.1. CONTRIBUTIONS

(after normalization1). Notably, key checks do not require decompression (keys can
be compressed into the same format) and can be implemented using a few integer
comparisons (e.g. multiple 64-bit integers could be compared with a single 64-bit
comparison). The compression rate depends on the data distribution (ranges) of
the inputs, on TPC-H, our method has shown significant gains in memory footprint.

Optimistic Splitting. Often, code paths are optimized for the worst case. For
example, if we compute the SUM of 64-bit integer, we can just naively add each 64-bit
integer to a 128-bit accumulator2. Assuming the worst-case can be costly, then it
can make sense to optimize for the average case instead, and provide potentially
pricey handling for the worst case. For example, if we sum many 64-bit integers, we
can either assume a final data type of 128-bit (naive method), or build partial sums
in 64-bit integers (average case) and flush them when needed (on under/overflow,
exception). Building partial sums tries to capitalize on the hope that values mostly
fit into some range and, thus, under/overflows will only occur infrequently. This
is the basic idea behind Optimistic Splitting, which proposes splitting the code
paths for (a) average case and (b) exception. We explored Optimistic Splitting
for aggregates (MIN, MAX, COUNT, SUM and AVG) and USSR-encoded strings. Optimistic
Splitting can significantly improve the size of the working set, by storing the average
case inside the hash table and the exception outside.

However, we believe this technique is more general and can be applied more widely.
The challenge is finding the average case and, then, optimizing for that case (Opti-
mize for 90% of values? What distribution do values have?).

Unique Strings Self-aligned Region (USSR). Strings are ubiquitous in real-
world data sets [VHF+18]. However, string operations tend to be slow as they
require multiple instructions and typically also require pointer chasing. Often,
strings repeat and are, thus, stored dictionary-compressed, as a code that iden-
tifies the string’s position in the dictionary. Comparing dictionary codes instead
of the full string is significantly cheaper (no pointer chasing, fewer instructions).
However, this has so far been only possible with global dictionaries, which comes
with significant disadvantages (update-ability, synchronization for multi node sys-
tems/clusters). Unique Strings Self-aligned Region (USSR) is a query-wide string
dictionary that is created while the query is running (on-the-fly) and encodes fre-
quent strings. Consequently, this reduces memory footprint and certain string op-
erations, such as equality check or computing the hash. Equality checks within the

1Normalization subtracts the domain minimum to (a) avoid negative integers (highest bits are
1s) and domains with offsets (e.g. years starting from 1900 AD instead of 200 BC.).

2Using a 128-bit integer avoids overflow detection per row, but comes with expensive additions.

167

9.1. CONTRIBUTIONS

USSR “dictionary codes” can be compared directly and hash computations will just
return a pre-computed hash, stored in the USSR (hash has to be computed upon
insertion).

Summary. All three techniques can be combined such that (a) hash table’s memory
footprint can be lowered and (b) query runtime improved. All three exploit data
distributions: Null Suppression relies on the range of values, Optimistic Splitting
on a frequency of certain sub-ranges and the USSR requires a relatively low amount
of unique strings. The applicability of these techniques depends on the query and
data distributions.

9.1.3 VOILA & Synthesis from VOILA

In Chapters 5 and 6, we describe how a domain-specific language (DSL) can be used
to abstract hardware- and implementation-specific details and, later, synthesize,
such details via code generation.

Variable Operator Implementation LAnguage (VOILA). In Chapter 6, we
explore the idea of abstracting implementation details using domain-specific lan-
guages. The challenge is that most existing DSLs are not well-suited for that pur-
pose (abstract implementation details to synthesize them later). We presented
Variable Operator Implementation LAnguage (VOILA), as one possible solution.
Furthermore, we formally defined the semantics and showed how widely used rela-
tional operators can be implemented in VOILA.

Synthesis from VOILA. Chapter 6 shows different examples of how efficient
implementations can be generated from VOILA. We focus on two different classes
of code generators: Flavor-specific “direct” back-ends and the more flexible back-
end, FUJI.

Direct Back-ends for Data-Centric and Vectorized Execution. The well-
known query execution paradigms Data-Centric Execution [Neu11] and Vectorized
Execution [BZN05] can relatively easily be generated from VOILA code. However,
they each require a slightly different back-end implementation. Therefore, for ex-
ploring the design space of specific queries, direct back-ends are unlikely to be the
optimal choice. Arguably, still more efficient than starting from scratch because the
surrounding VOILA infrastructure, including queries and testing, can be reused.

Flexible Unified JIT Infrastructure (FUJI). For design space exploration,
direct back-ends require quite excessive manual labor (i.e. crafting one back-end per

168

9.1. CONTRIBUTIONS

flavor). Therefore, the next logical step is a more flexible code generation: Flexible
Unified JIT Infrastructure (FUJI). FUJI allows generating many flavors and mixes
thereof from one program in VOILA. We aim for a more automated design-space
exploration. FUJI takes the first steps by providing very flexible code generation,
while the VOILA infrastructure allows benchmarking multiple generated points.

Summary. With VOILA we presented a DSL able to abstract implementation
and hardware-specific details. The aspect of abstraction is useful for forward com-
patibility with future hardware features and architectures (requires back-ends to
synthesize these features later on). For example, Data-Centric [Neu11] and Vec-
torized Execution [BZN05] exhibit different performance characteristics [KLK+18].
With VOILA, we have one DSL able to generate both very different flavors. Each
back-end explores specific points of the low-level design space (implementation de-
tails).

9.1.4 Performance Diversity

In Chapter 7, we investigate how certain flavors behave on various hardware archi-
tectures.

Performance Diversity. We found that there is significant performance diversity.
The best flavor is not necessarily the one that the study by Kersten et al. [KLK+18]
would predict. Most notably, Data-Centric Execution was able to (sometimes)
outperform Vectorized Execution, depending on the hardware environment. Certain
hardware features appeared to favor Data-Centric Execution for join queries, i.e. (a)
large caches, (b) high levels of SMT (simultaneous multi-threading) and (c) slow(er)
cores. In summary, the best flavor tends to depend on the whole system consisting
of query structure, data distribution and hardware environment. Importantly, the
hardware environment is often a factor that is out of our control.

ARM became Competitive. In addition, we tested on ARM-based systems
and noticed that they can outperform the high-end X86-based systems (Graviton 2
outperformed all other systems in the queries we tested, on query runtime).

9.1.5 Excalibur

With Chapter 8, we go to the next logical step from VOILA: Create a prototype
that automatically explores the design space, more efficiently and at runtime.

Framework. Excalibur is a prototype that exploits instance-specific optimizations,
automatically and while the query is running (on-the-fly). It mixes many optimiza-

169

9.1. CONTRIBUTIONS

tions from reordering filters, Bloom filters to different implementation flavors from
VOILA (Vectorized [BZN05] interpreted execution, Data-Centric [Neu11] to differ-
ent vectorized primitives). The transformations are encoded as a chain of choices,
which are built via Exploration Strategies, that add certain choices (optimizations).

Excalibur is open-source and provides an interface for scans and can, thus, be used
as a highly efficient embedded database engine.

Exploration Strategies. The challenge with the exploration in the VOILA frame-
work was its in-efficiency. VOILA basically tried to sample the space, making ran-
dom choices. While random sampling is an unbiased strategy, finding “good” points
will take rather long (assuming non-trivial queries). Especially, when trying to fur-
ther improve query runtime on-the-fly random sampling will find beneficial points,
typically, too late3, if at all. It is a reasonable assumption that other “good” points
can probably be found in the neighborhood of already discovered “good” points.

Monte Carlo Tree Search (MCTS). We adapted Monte Carlo Tree Search
(MCTS) to our exploration problem (exploration choices form a tree). MCTS has
two major advantages: (a) given enough time, it will explore the whole space and
(b) beneficial branches will be explored more heavily. Further, we augmented the
choice of unexplored nodes (in the tree) based on distance (of choice chains) and
similarly with other known choices (maximum dissimilarity).

Learning. Still, often exploration still requires excessive time. Simply, more effi-
cient exploration is not enough. Fortunately, it is possible to incrementally extend
the MCTS over multiple runs of the same (similar) query (based on the plan of the
current pipeline). Additionally, we proposed to remember the last “good” points
per query, such that the following runs can start with the currently best flavor.

Summary. By design, Excalibur can generate different code paths, via VOILA,
and choose the currently best one (if found). Beyond that, Excalibur can apply
higher level optimizations (reorder filters, enable Bloom filters) in a code-generating
system. Given the right set of optimizations, Excalibur can automatically optimize
to the specific instance.

To exploit heterogeneous hardware, optimization steps could offload to accelera-
tors (GPU, FPGA), optimize VOILA code for new instructions, prefetching etc.
Excalibur would then try, whether these optimizations are beneficial.

3Possible runtime improvements are easily ruined by over-exploring (compilation and runtime
overhead). Furthermore, to achieve good improvements, a good flavor has to be found as early as
possible. The further the query progresses, the less the improvement becomes.

170

9.2. REFLECTIONS & FUTURE WORK

9.2 Reflections & Future Work

In this final section, we reflect upon the important challenges tackled in this thesis
and highlight ideas for future work. We start with the automated discovery (of
good implementations), followed by exploration strategies and offloading to hetero-
geneous hardware. Finally, we give a final reflection on the results of this thesis.

9.2.1 Seeking the Holy Grail — Automated Discovery

With the advantage of hindsight, it appears that trying to optimize for the specific
instance is like a never-ending search, often yielding disappointing results.

While VOILA simplifies that process, it can only synthesize specific patterns (i.e.
makes it hard to impossible to explore all possible points). So far, only Supercom-
pilation [Tur86] can do that, but is practically unfeasible as it requires too many
mutation steps to even get close to known paradigms.

The best gains (improvement in runtime), we have found using human ingenuity
(Chapters 3 and 4). Still, we applied already known patterns (use less space to
represent data, re-order data on-the-fly, use data-parallelism whenever possible,
and simplify the representation of complex data types).

We believe that this is rather a matter of finding the right abstractions. For future
work, the question becomes whether VOILA uses the right patterns or whether
there are “atomic” patterns able to generate VOILA’s patterns.

9.2.2 Exploration Strategies

With the VOILA framework and Excalibur, we highlighted that it is more efficient
to explore the space using combinations of fixed patterns, compared to “brute-force”
methods like Supercompilation [Tur86] or manual development.

(More) Practical Exploration. While the ability to synthesize different im-
plementations does allow exploring the design space (e.g. by random sampling
or exhaustive search), it is not very practical as “good” points are possibly ex-
plored too late. For example, in an adaptive VM (like Excalibur) finding a better
implementation too late means query execution, in the current run, will not im-
prove. In Chapter 8, we explored using heuristics and an adapted Monte Carlo
Tree Search (MCTS). Heuristics require human ingenuity to bias exploration to-
wards good points. Therefore, using heuristics is not a generic approach, as it
cannot find certain points too late (if exhaustive search is used) or at all (if we

171

9.2. REFLECTIONS & FUTURE WORK

prune the space). MCTS, however, will guarantee to explore the whole space (if
given enough time) and tends towards extending beneficial branches of the search
tree. Still, there is no guarantee that good implementations are combinations of
good choices.

Perhaps, exploration strategies should be rethought: What we want is to find a path
through the design space starting with the highest chances of success. However,
quantifying the likeliness will be hard without knowledge (from random samples, or
from similar points).

One could also interpret the adaptive system as a sequence of question-answer pairs
and, somehow, try to minimize the number of questions (Active Learning). However,
the optimal answer might still require a number of questions proportional to the
size of the space, as we do not know (yet?) any rules to efficiently skip points (if
there was an order, we could use bisection or interpolation search).

Hybrid - Pruning using Cost Models. We assumed that an adaptive (online
learning) approach would be the “best” because it avoids creating and maintaining
very specific cost models (not only hardware- but also environment-specific). The
problem is that the adaptive approach requires relatively smart exploration (which
is biased towards good points) due to the lack of exploration time. There is a point
to be made for cost models. Since we still do not know much about the design space,
it seems possible that cost models can perform reasonably well. This can be either
for predicting good points in the design space, or to prune points unlikely to be
good. It seems reasonable that a basic machine model (e.g. for CPU and memory)
can be created, which can then simulate many flavors and disqualify flavors with
excessive cost. If the simulation on the cost model is faster than the real run (likely
the case, given a simple model), pruning would be very efficient, as it could quickly
eliminate large sub-spaces.

The Non-Stationary Case. In Chapter 8, we assumed that there exists one
optimal point that never changes during the execution of the pipeline (stationary).
However, this assumption is not always true in practice. For example, selectivities
can change during execution of the pipeline (e.g. join has 10% during the first
half and 90% selectivity during the second half). Therefore, the optimal point can
change as well.

Handling non-stationary cases, typically, requires periodically re-exploring points
to check whether the situation changed, and then trying to find the new optimal
point. Obviously, re-exploration will incur some overhead. In an adaptive VM like

172

9.2. REFLECTIONS & FUTURE WORK

Excalibur, it can become rather costly, if the required code fragments are not cached
(triggering compilation).

9.2.3 Offloading to Heterogeneous Hardware

One aspect of the upcoming modern hardware that has not received much attention
in this thesis is: Can VOILA generate code for heterogeneous hardware, and can
Excalibur efficiently offload (and dynamically) offload to it?

In theory, the building blocks should be there. Morsel-driven parallelism allows of-
floading pipelines to accelerators [GTLB19]. Since VOILA supports Morsel-driven
parallelism (Section 5.5.5), it should be possible to implement VOILA back-ends
for CUDA or OpenCL and integrate them into Excalibur. This would allow to dy-
namically offload parts of a query to accelerator devices (and decide automatically
whether it makes sense to do so). Finding the optimal flavor will introduce addi-
tional code generation effort to do the fine-tuning [TGR+18] as well as finding the
optimal number of streams (from CPU to GPU, and back).

But, with these parts in place, Excalibur could become the go-to system for future
heterogeneous hardware. New back-ends can be added, and the adaptive VM would
automatically handle the offloading.

9.2.4 Final Reflections

We set out to find a better implementation of a query, a point in the design space,
given a specific setup and data (instance-specific optimization)

We found some better points in the design space. Especially, for TPC-H Q1 and
similar queries, these points yielded quite significant improvements (Chapter 3). But
also for queries with strings, hash joins and aggregations we were able to reduce
the memory footprint and significantly improve query runtimes (Chapter 4). The
methods from both chapters are relatively widely applicable and can relatively easily
be integrated into existing (vectorized) systems.

Still, the question, of how to find better points efficiently and exploit them, remains
only partially solved. VOILA (Chapters 5 and 6) attempted to explore the space,
by abstracting and re-synthesizing execution-specific details. Unfortunately, the
design space seemed more disappointing than originally hoped, and new points,
with significant improvements, tend to be rather rare (Chapter 6). But there is
the possibility that we simply looked in the wrong corner of design space, or the
problem itself might rely more on human ingenuity than we thought.

173

9.2. REFLECTIONS & FUTURE WORK

Excalibur (Chapter 8) improved upon the VOILA framework by (a) its ability to
exploit the design space efficiently via adaptive JIT compilation and (b) improved
exploration methods (heuristic and an augmented Monte Carlo Tree Search). Ex-
calibur is a rather generic prototype that can be used for further research on new
exploration methods or ways to generate code. The personal lesson learned from Ex-
calibur is that neither cost-based nor online learning (adaptive) exploration seemed
to be the optimum (good cost models are difficult to create and maintain; adap-
tivity requires numerous trials). Thus, with a bit of luck, there might be a better
method that we just have not discovered yet.

174

Bibliography

[ABH+13] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos, and
Samuel Madden. The Design and Implementation of Modern Column-
Oriented Database Systems. Foundations and Trends in Databases,
5(3):197–280, 2013.

[ACBF02] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis
of the multiarmed bandit problem. Machine learning, 47(2):235–256,
2002.

[Alc20] Paul Alcorn. Zhaoxin KaiXian x86 CPU Tested: The Rise of China’s
Chips. https://www.tomshardware.com/features/zhaoxin-kx-
u6780a-x86-cpu-tested, 2020. Accessed: 2022-02-11.

[Ama19] Amazon. Announcing New Amazon EC2 M6g, C6g, and R6g
Instances Powered by Next-Generation Arm-based AWS Gravi-
ton2 Processors. https://aws.amazon.com/about-aws/whats-
new/2019/12/announcing-new-amazon-ec2-m6g-c6g-and-r6g-
instances-powered-by-next-generation-arm-based-aws-
graviton2-processors/?nc1=h_ls, 2019. Accessed: 2024-08-20.

[Ama20] Amazon. Announcing new Amazon EC2 M6gd, C6gd, and R6gd
instances powered by AWS Graviton2 processors. https://aws.
amazon.com/de/about-aws/whats-new/2020/07/announcing-new-
amazon-ec2-instances-powered-aws-graviton2-processors/,
2020. Accessed: 2024-08-20.

[Ama21a] Amazon. https://aws.amazon.com/en/ec2/graviton/, 2021. Ac-
cessed: 2021-03-02.

[Ama21b] Amazon. https://d1.awsstatic.com/events/reinvent/2019/
REPEAT_1_Deep_dive_on_Arm-based_EC2_instances_powered_by_
AWS_Graviton_CMP322-R1.pdf, 2021. Accessed: 2021-03-02.

[Ama21c] Amazon. https://aws.amazon.com/de/ec2/spot/pricing/, 2021.
Accessed: 2021-03-19.

175

https://www.tomshardware.com/features/zhaoxin-kx-u6780a-x86-cpu-tested
https://www.tomshardware.com/features/zhaoxin-kx-u6780a-x86-cpu-tested
https://aws.amazon.com/about-aws/whats-new/2019/12/announcing-new-amazon-ec2-m6g-c6g-and-r6g-instances-powered-by-next-generation-arm-based-aws-graviton2-processors/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2019/12/announcing-new-amazon-ec2-m6g-c6g-and-r6g-instances-powered-by-next-generation-arm-based-aws-graviton2-processors/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2019/12/announcing-new-amazon-ec2-m6g-c6g-and-r6g-instances-powered-by-next-generation-arm-based-aws-graviton2-processors/?nc1=h_ls
https://aws.amazon.com/about-aws/whats-new/2019/12/announcing-new-amazon-ec2-m6g-c6g-and-r6g-instances-powered-by-next-generation-arm-based-aws-graviton2-processors/?nc1=h_ls
https://aws.amazon.com/de/about-aws/whats-new/2020/07/announcing-new-amazon-ec2-instances-powered-aws-graviton2-processors/
https://aws.amazon.com/de/about-aws/whats-new/2020/07/announcing-new-amazon-ec2-instances-powered-aws-graviton2-processors/
https://aws.amazon.com/de/about-aws/whats-new/2020/07/announcing-new-amazon-ec2-instances-powered-aws-graviton2-processors/
https://aws.amazon.com/en/ec2/graviton/
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deep_dive_on_Arm-based_EC2_instances_powered_by_AWS_Graviton_CMP322-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deep_dive_on_Arm-based_EC2_instances_powered_by_AWS_Graviton_CMP322-R1.pdf
https://d1.awsstatic.com/events/reinvent/2019/REPEAT_1_Deep_dive_on_Arm-based_EC2_instances_powered_by_AWS_Graviton_CMP322-R1.pdf
https://aws.amazon.com/de/ec2/spot/pricing/

BIBLIOGRAPHY

[Ama23] Amazon. https://aws.amazon.com/de/blogs/aws/new-graviton3-
based-general-purpose-m7g-and-memory-optimized-r7g-
amazon-ec2-instances/, 2023. Accessed: 2023-10-29.

[Amd67] Gene M. Amdahl. Validity of the Single Processor Approach to Achiev-
ing Large Scale Computing Capabilities. AFIPS ’67 (Spring), page
483–485, 1967.

[AMF06] Daniel Abadi, Samuel Madden, and Miguel Ferreira. Integrating Com-
pression and Execution in Column-oriented Database Systems. In SIG-
MOD, pages 671–682, 2006.

[and20] Dalvik bytecode. https://source.android.com/devices/tech/
dalvik/dalvik-bytecode, 2020. Accessed: 2022-02-11.

[App21] Apple. https://www.apple.com/mac/m1/, 2021. Accessed: 2021-03-
02.

[aws21a] https://www.forbes.com/sites/moorinsights/2019/12/03/aws-
goes-all-in-on-arm-based-graviton2-processors-with-ec2-
6th-gen-instances/, 2021. Accessed: 2021-03-02.

[aws21b] https://en.wikichip.org/wiki/annapurna_labs/alpine/
al73400, 2021. Accessed: 2021-03-02.

[aws21c] https://www.anandtech.com/show/15578/cloud-clash-amazon-
graviton2-arm-against-intel-and-amd, 2021. Accessed: 2021-03-
02.

[BAK17] Peter Boncz, Angelos-Christos Anatiotis, and Steffen Kläbe. JCC-H:
Adding Join Crossing Correlations with Skew to TPC-H. In TPCTC,
pages 103–119, 2017.

[BBF+10] Michael Bebenita, Florian Brandner, Manuel Fahndrich, Francesco Lo-
gozzo, Wolfram Schulte, Nikolai Tillmann, and Herman Venter. SPUR:
a trace-based JIT compiler for CIL. In Proceedings of the ACM inter-
national conference on Object oriented programming systems languages
and applications, pages 708–725, 2010.

[BCFR09] Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin
Rigo. Tracing the meta-level: PyPy’s tracing JIT compiler. In Pro-
ceedings of the 4th workshop on the Implementation, Compilation, Op-
timization of Object-Oriented Languages and Programming Systems,
pages 18–25, 2009.

[BK99] Peter A. Boncz and Martin L. Kersten. MIL Primitives for Querying
a Fragmented World. VLDB Journal, 8(2):101–119, 1999.

[BKF+18] Sebastian Breß, Bastian Köcher, Henning Funke, Steffen Zeuch,
Tilmann Rabl, and Volker Markl. Generating custom code for effi-
cient query execution on heterogeneous processors. VLDB Journal,
27(6):797–822, 2018.

[BKM08] Peter Boncz, Martin Kersten, and Stefan Manegold. Breaking the
memory wall in monetdb. Communications of the ACM, 51(12):77–85,
2008.

[Ble90] Guy E. Blelloch. Vector Models for Data-parallel Computing. MIT
Press, 1990.

176

https://aws.amazon.com/de/blogs/aws/new-graviton3-based-general-purpose-m7g-and-memory-optimized-r7g-amazon-ec2-instances/
https://aws.amazon.com/de/blogs/aws/new-graviton3-based-general-purpose-m7g-and-memory-optimized-r7g-amazon-ec2-instances/
https://aws.amazon.com/de/blogs/aws/new-graviton3-based-general-purpose-m7g-and-memory-optimized-r7g-amazon-ec2-instances/
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://source.android.com/devices/tech/dalvik/dalvik-bytecode
https://www.apple.com/mac/m1/
https://www.forbes.com/sites/moorinsights/2019/12/03/aws-goes-all-in-on-arm-based-graviton2-processors-with-ec2-6th-gen-instances/
https://www.forbes.com/sites/moorinsights/2019/12/03/aws-goes-all-in-on-arm-based-graviton2-processors-with-ec2-6th-gen-instances/
https://www.forbes.com/sites/moorinsights/2019/12/03/aws-goes-all-in-on-arm-based-graviton2-processors-with-ec2-6th-gen-instances/
https://en.wikichip.org/wiki/annapurna_labs/alpine/al73400
https://en.wikichip.org/wiki/annapurna_labs/alpine/al73400
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd
https://www.anandtech.com/show/15578/cloud-clash-amazon-graviton2-arm-against-intel-and-amd

BIBLIOGRAPHY

[Blo70] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allow-
able Errors. Commun. ACM, 13(7):422–426, 1970.

[BLP+14] Ronald Barber, Guy Lohman, Ippokratis Pandis, Vijayshankar Raman,
Richard Sidle, Gopi Attaluri, Naresh Chainani, Sam Lightstone, and
David Sharpe. Memory-efficient hash joins. PVLDB, 8(4):353–364,
2014.

[BNE13] Peter Boncz, Thomas Neumann, and Orri Erling. TPC-H analyzed:
Hidden messages and lessons learned from an influential benchmark. In
Technology Conference on Performance Evaluation and Benchmarking,
pages 61–76, 2013.

[Bon02] Peter Boncz. Monet: A next-generation DBMS kernel for query-
intensive applications. Universiteit van Amsterdam, 2002.

[BTAÖ13] Cagri Balkesen, Jens Teubner, Gustavo Alonso, and M. Tamer Özsu.
Main-memory hash joins on multi-core CPUs: Tuning to the underlying
hardware. In ICDE, pages 362–373, 2013.

[BZN05] Peter Boncz, Marcin Zukowski, and Niels Nes. MonetDB/X100:
Hyper-Pipelining Query Execution. In CIDR, pages 225–237, 2005.

[CAB+81] Donald D Chamberlin, Morton M Astrahan, Michael W Blasgen,
James N Gray, W Frank King, Bruce G Lindsay, Raymond Lorie,
James W Mehl, Thomas G Price, Franco Putzolu, et al. A History
and Evaluation of System R. Commun. ACM, pages 632–646, 1981.

[CG12] Alain Crolotte and Ahmad Ghazal. Introducing Skew into the TPC-H
Benchmark. In TPCTC, pages 137–145, 2012.

[CGK20] Andrew Crotty, Alex Galakatos, and Tim Kraska. Getting swole: Gen-
erating access-aware code with predicate pullups. In ICDE, pages 1273–
1284, 2020.

[Cod83] Edgar Frank Codd. A relational model of data for large shared data
banks. Communications of the ACM, 26(1):64–69, 1983.

[dbl] https://github.com/epfldata/dblab.

[DG16] Johan De Gelas. https://www.anandtech.com/show/10353/
investigating-cavium-thunderx-48-arm-cores, 2016. Accessed
August 20, 2024.

[dow22] https://stackoverflow.com/a/56861355, 2022. Accessed: 2022-02-
16.

[dud] https://duckdb.org/.

[EHZH+22] Muhammad El-Hindi, Tobias Ziegler, Matthias Heinrich, Adrian
Lutsch, Zheguang Zhao, and Carsten Binnig. Benchmarking the Sec-
ond Generation of Intel SGX Hardware. In DaMoN, pages 1–8, 2022.

[EPI24] EPI. Accelerator Processor Stream. https://www.european-
processor-initiative.eu/accelerator/, 2024. Accessed: 2024-08-
26.

[euR24] https://www.european-processor-initiative.eu/, 2024. Ac-
cessed: 2024-08-20.

177

https://github.com/epfldata/dblab
https://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores
https://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores
https://stackoverflow.com/a/56861355
https://duckdb.org/
https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/accelerator/
https://www.european-processor-initiative.eu/

BIBLIOGRAPHY

[FCP+12] Franz Färber, Sang Kyun Cha, Jürgen Primsch, Christof Bornhövd,
Stefan Sigg, and Wolfgang Lehner. SAP HANA database: Data man-
agement for modern business applications. SIGMOD Record, pages
45–51, 2012.

[Feg16] Leonidas Fegaras. An Algebra for Distributed Big Data Analytics.
2016.

[FM95] Leonidas Fegaras and David Maier. Towards an Effective Calculus for
Object Query Languages. SIGMOD, pages 47–58, 1995.

[Fru14] Andrei Frumusanu. A Closer Look at Android RunTime (ART) in An-
droid L. https://www.anandtech.com/show/8231/a-closer-look-
at-android-runtime-art-in-android-l/, 2014. Accessed: 2022-02-
11.

[FW88] Alex Ferguson and Philip Wadler. When will deforestation stop. In
Proc. of 1988 Glasgow Workshop on Functional Programming, pages
39–56, 1988.

[FZW] Zhuhe Fang, Beilei Zheng, and Chuliang Weng. https://github.com/
fzhedu/db-imv/blob/master/src/imv/engine.cpp, line 226. Ac-
cessed June 10, 2020.

[FZW19] Zhuhe Fang, Beilei Zheng, and Chuliang Weng. Interleaved Multi-
vectorizing. PVLDB, 13(3):226–238, 2019.

[GBE+23] Ferdinand Gruber, Maximilian Bandle, Alexis Engelke, Thomas Neu-
mann, and Jana Giceva. Bringing compiling databases to risc archi-
tectures. PVLDB, 16(6):1222–1234, 2023.

[GES+09] Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David
Mandelin, Mohammad R Haghighat, Blake Kaplan, Graydon Hoare,
Boris Zbarsky, Jason Orendorff, et al. Trace-based just-in-time type
specialization for dynamic languages. ACM Sigplan Notices, 44(6):465–
478, 2009.

[gfn20] What are the AVX-512 Galois-field-related instructions for?
https://stackoverflow.com/questions/59124720/what-are-
the-avx-512-galois-field-related-instructions-for, 2020.
Accessed: 2023-08-05.

[Gör13] Steve Göring. Effiziente In-Memory Verarbeitung von SPARQL-
Anfragen auf großen Datenmengen. Master’s thesis, Technical Uni-
versity of Ilmenau, 2013.

[Gow71] John C Gower. A general coefficient of similarity and some of its
properties. Biometrics, pages 857–871, 1971.

[GPF06] Andreas Gal, Christian W Probst, and Michael Franz. HotpathVM: An
effective JIT compiler for resource-constrained devices. In Proceedings
of the 2nd international conference on Virtual execution environments,
pages 144–153, 2006.

[GPK94] César A. Galindo-Legaria, Arjan Pellenkoft, and Martin L. Kersten.
Fast, Randomized Join-Order Selection - Why Use Transformations?
In VLDB’94, pages 85–95, 1994.

178

https://www.anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
https://www.anandtech.com/show/8231/a-closer-look-at-android-runtime-art-in-android-l/
https://github.com/fzhedu/db-imv/blob/master/src/imv/engine.cpp
https://github.com/fzhedu/db-imv/blob/master/src/imv/engine.cpp
https://stackoverflow.com/questions/59124720/what-are-the-avx-512-galois-field-related-instructions-for
https://stackoverflow.com/questions/59124720/what-are-the-avx-512-galois-field-related-instructions-for

BIBLIOGRAPHY

[Gra93] Goetz Graefe. Query evaluation techniques for large databases. ACM
Computing Surveys, 25(2):73–169, 1993.

[Gra94] Goetz Graefe. Volcano - An Extensible and Parallel Query Evaluation
System. IEEE Trans. on Knowl. and Data Eng., 6(1):120–135, 1994.

[Gru04] Torsten Grust. Monad comprehensions: a versatile representation for
queries. In The Functional Approach to Data Management, pages 288–
311. Springer, 2004.

[GTLB19] Tim Gubner, Diego Tomé, Harald Lang, and Peter Boncz. Fluid Co-
processing: GPU Bloom-filters for CPU Joins. In DaMoN, pages 9:1–
9:10, 2019.

[Gub14] Tim Gubner. Achieving many-core scalability in Vectorwise. Master’s
thesis, Technical University of Ilmenau, 2014.

[Gub18] Tim Gubner. Designing an adaptive VM that combines vectorized and
JIT execution on heterogeneous hardware. In Proc. ICDE, 2018.

[HCL+90] Laura M. Haas, Wendy Chang, Guy M. Lohman, John McPher-
son, Paul F. Wilms, George Lapis, Bruce Lindsay, Hamid Pirahesh,
Michael J. Carey, and Eugene Shekita. Starburst Mid-Flight: As the
Dust Clears. IEEE Trans. on Knowl. and Data Eng., pages 143–160,
1990.

[Hua19] Huawei. Huawei Unveils Industry’s Highest-Performance ARM-based
CPU. https://www.huawei.com/en/news/2019/1/huawei-unveils-
highest-performance-arm-based-cpu, 2019. Accessed: 2022-09-24.

[HZN+10] Sándor Héman, Marcin Zukowski, Niels J. Nes, Lefteris Sidirourgos,
and Peter Boncz. Positional Update Handling in Column Stores. In
SIGMOD, pages 543–554, 2010.

[IGN+12] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, Sjoerd
Mullender, and Martin Kersten. MonetDB: Two Decades of Research
in Column-oriented Database. IEEE Data Engineering Bulletin, 2012.

[Inta] Intel. Beyond Direct Memory Access: Reducing the Data Center
Tax with Intel Data Streaming Accelerator. https://www.intel.
com/content/www/us/en/developer/articles/technical/beyond-
direct-memory-access-datacenter-tax-dsa.html. Accessed:
2023-11-19.

[Intb] Intel. Intel® Software Guard Extensions (Intel® SGX) Devel-
oper Guide. https://cdrdv2-public.intel.com/671581/intel-
sgx-developer-guide.pdf. Accessed: 2024-08-20.

[Intc] Intel. Power AI Anywhere with Built-In AI Acceleration.
https://www.intel.com/content/www/us/en/products/docs/
accelerator-engines/ai-engines.html. Accessed: 2023-11-19.

[Intd] Intel. What Is Intel Advanced Matrix Extensions (Intel
AMX)? https://www.intel.com/content/www/us/en/products/
docs/accelerator-engines/what-is-intel-amx.html. Accessed:
2023-11-19.

179

https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.huawei.com/en/news/2019/1/huawei-unveils-highest-performance-arm-based-cpu
https://www.intel.com/content/www/us/en/developer/articles/technical/beyond-direct-memory-access-datacenter-tax-dsa.html
https://www.intel.com/content/www/us/en/developer/articles/technical/beyond-direct-memory-access-datacenter-tax-dsa.html
https://www.intel.com/content/www/us/en/developer/articles/technical/beyond-direct-memory-access-datacenter-tax-dsa.html
https://cdrdv2-public.intel.com/671581/intel-sgx-developer-guide.pdf
https://cdrdv2-public.intel.com/671581/intel-sgx-developer-guide.pdf
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/ai-engines.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/ai-engines.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html
https://www.intel.com/content/www/us/en/products/docs/accelerator-engines/what-is-intel-amx.html

BIBLIOGRAPHY

[Int16] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual,
September 2016. [Accessed on June 28, 2017].

[Int23] Intel. Enhance Business with Faster Insights with Intel
IAA. https://www.intel.com/content/www/us/en/content-
details/787805/enhance-business-with-faster-insights-
with-intel-iaa.html, 2023. Accessed: 2023-11-19.

[JMH+16] Shrainik Jain, Dominik Moritz, Daniel Halperin, Bill Howe, and Ed La-
zowska. SQLShare: Results from a Multi-Year SQL-as-a-Service Ex-
periment. In SIGMOD, pages 281–293, 2016.

[KFG15] Onur Kocberber, Babak Falsafi, and Boris Grot. Asynchronous mem-
ory access chaining. PVLDB, 9(4):252–263, 2015.

[KLK+18] Timo Kersten, Viktor Leis, Alfons Kemper, Thomas Neumann, An-
drew Pavlo, and Peter Boncz. Everything you always wanted to know
about compiled and vectorized queries but were afraid to ask. PVLDB,
pages 2209–2222, 2018.

[KLN18] André Kohn, Viktor Leis, and Thomas Neumann. Adaptive Execution
of Compiled Queries. ICDE, 2018.

[KLN21] Timo Kersten, Viktor Leis, and Thomas Neumann. Tidy Tuples and
Flying Start: fast compilation and fast execution of relational queries
in Umbra. The VLDB Journal, pages 1–23, 2021.

[Kra17] Vlad Krasnov. On the dangers of Intel’s frequency scal-
ing. https://blog.cloudflare.com/on-the-dangers-of-intels-
frequency-scaling/, 2017. Accessed: 2022-02-16.

[KS06] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo plan-
ning. In European conference on machine learning, pages 282–293,
2006.

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In CGO, Palo Alto,
California, 2004.

[LAB+20] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy
Davis, Jacques Pienaar, River Riddle, Tatiana Shpeisman, Nicolas
Vasilache, and Oleksandr Zinenko. MLIR: A compiler infrastructure
for the end of Moore’s law. arXiv preprint arXiv:2002.11054, 2020.

[Lat02] Chris Lattner. LLVM: An Infrastructure for Multi-Stage Opti-
mization. Master’s thesis, Computer Science Dept., University
of Illinois at Urbana-Champaign, Urbana, IL, Dec 2002. See
http://llvm.cs.uiuc.edu.

[LBKN14] Viktor Leis, Peter Boncz, Alfons Kemper, and Thomas Neumann.
Morsel-driven parallelism: A NUMA-aware query evaluation frame-
work for the many-core age. In SIGMOD, pages 743–754, 2014.

[LCH+11] Per-Åke Larson, Cipri Clinciu, Eric N Hanson, Artem Oks, Susan L
Price, Srikumar Rangarajan, Aleksandras Surna, and Qingqing Zhou.
SQL Server Column Store Indexes. SIGMOD, pages 1177–1184, 2011.

180

https://www.intel.com/content/www/us/en/content-details/787805/enhance-business-with-faster-insights-with-intel-iaa.html
https://www.intel.com/content/www/us/en/content-details/787805/enhance-business-with-faster-insights-with-intel-iaa.html
https://www.intel.com/content/www/us/en/content-details/787805/enhance-business-with-faster-insights-with-intel-iaa.html
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/
https://blog.cloudflare.com/on-the-dangers-of-intels-frequency-scaling/

BIBLIOGRAPHY

[LGM+15] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons
Kemper, and Thomas Neumann. How good are query optimizers, re-
ally? PVLDB, 9(3):204–215, 2015.

[LLC23] Yinan Li, Jianan Lu, and Badrish Chandramouli. Selection Push-
down in Column Stores using Bit Manipulation Instructions. SIGMOD,
1(2):1–26, 2023.

[LMF+16] Harald Lang, Tobias Mühlbauer, Florian Funke, Peter A Boncz,
Thomas Neumann, and Alfons Kemper. Data Blocks: Hybrid OLTP
and OLAP on compressed storage using both vectorization and com-
pilation. In SIDMOG, pages 311–326, 2016.

[Loh88] Guy M. Lohman. Grammar-like Functional Rules for Representing
Query Optimization Alternatives. SIGMOD Record, pages 18–27, 1988.

[LPK+20] Harald Lang, Linnea Passing, Andreas Kipf, Peter Boncz, Thomas
Neumann, and Alfons Kemper. Make the most out of your SIMD in-
vestments: counter control flow divergence in compiled query pipelines.
The VLDB Journal, 29(2):757–774, 2020.

[LR20] Lottie Lynn and Matthew Reynolds. PS5 specs and features,
including SSD, ray tracing, GPU and CPU for the PlayStation
5 explained. https://www.eurogamer.net/articles/ps5-specs-
features-ssd-ray-tracing-cpu-gpu-6300, 2020. Accessed: 2022-
02-11.

[LS20] Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge
University Press, 2020.

[Łus11] Alicja Łuszczak. Simple Solutions for Compressed Execution in Vector-
ized Database System. Master’s thesis, Vrije Universiteit Amsterdam,
2011.

[Mic] Microsoft. Xbox Series X. https://www.xbox.com/en-US/consoles/
xbox-series-x#specs. Accessed: 2022-02-11.

[MMP17] Prashanth Menon, Todd C. Mowry, and Andrew Pavlo. Relaxed Op-
erator Fusion for In-memory Databases: Making Compilation, Vector-
ization, and Prefetching Work Together at Last. PVLDB, 11(1):1–13,
2017.

[MRF14] Ingo Müller, Cornelius Ratsch, and Franz Färber. Adaptive String Dic-
tionary Compression in In-Memory Column-Store Database Systems.
In EDBT, pages 283–294, 2014.

[NBH+18] Michal Nowakiewicz, Eric Boutin, Eric Hanson, Robert Walzer, and
Akash Katipally. BIPie: Fast Selection and Aggregation on Encoded
Data Using Operator Specialization. In SIGMOD, pages 1447–1459,
2018.

[Neu11] Thomas Neumann. Efficiently compiling efficient query plans for mod-
ern hardware. PVLDB, 4(9):539–550, 2011.

[NF20] Thomas Neumann and Michael J Freitag. Umbra: A Disk-Based Sys-
tem with In-Memory Performance. In CIDR, 2020.

[NVI] NVIDIA. NVIDIA Grace CPU and Arm Architecture. https://www.
nvidia.com/en-us/data-center/grace-cpu/. Accessed: 2024-08-17.

181

https://www.eurogamer.net/articles/ps5-specs-features-ssd-ray-tracing-cpu-gpu-6300
https://www.eurogamer.net/articles/ps5-specs-features-ssd-ray-tracing-cpu-gpu-6300
https://www.xbox.com/en-US/consoles/xbox-series-x#specs
https://www.xbox.com/en-US/consoles/xbox-series-x#specs
https://www.nvidia.com/en-us/data-center/grace-cpu/
https://www.nvidia.com/en-us/data-center/grace-cpu/

BIBLIOGRAPHY

[Pal] Mike Pall. https://luajit.org/luajit.html. Accessed June 10,
2023.

[Pal09] Mike Pall. Luajit 2.0 intellectual property disclosure and re-
search opportunities. http://lua-users.org/lists/lua-l/2009-
11/msg00089.html, 2009. Accessed June 10, 2023.

[PMZM16] Holger Pirk, Oscar Moll, Matei Zaharia, and Sam Madden. Voodoo - a
Vector Algebra for Portable Database Performance on Modern Hard-
ware. PVLDB, pages 1707–1718, 2016.

[Pos11] Cyclic Tag System. https://wiki.postgresql.org/index.php?
title=Cyclic_Tag_System&oldid=15106, 2011. Accessed: 2023-07-
02.

[pre20] What are _mm_prefetch() locality hints? https://stackoverflow.
com/questions/46521694/what-are-mm-prefetch-locality-
hints, 2020. Accessed: 2020-07-01.

[PTS+17] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak
Narayanan, Holger Pirk, Malte Schwarzkopf, Saman Amarasinghe,
Matei Zaharia, and Stanford InfoLab. Weld: A common runtime for
high performance data analytics. In CIDR ’17, 2017.

[PVC01] Michael Paleczny, Christopher Vick, and Cliff Click. The java
{HotSpot™} server compiler. In Java (TM) Virtual Machine Research
and Technology Symposium (JVM 01), 2001.

[RAB+13] Vijayshankar Raman, Gopi Attaluri, Ronald Barber, Naresh Chainani,
David Kalmuk, Vincent KulandaiSamy, Jens Leenstra, Sam Lightstone,
Shaorong Liu, Guy M Lohman, et al. DB2 with BLU acceleration: So
much more than just a column store. PVLDB, 6(11):1080–1091, 2013.

[RBŁ21] Greg Rahn, Alexander Behm, and Alicja Łuszczak. https:
//databricks.com/blog/2021/06/17/announcing-photon-
public-preview-the-next-generation-query-engine-on-the-
databricks-lakehouse-platform.html, 2021. Accessed: 2021-09-14.

[RBZ13] Bogdan Răducanu, Peter Boncz, and Marcin Zukowski. Micro Adap-
tivity in Vectorwise. SIGMOD, pages 1231–1242, 2013.

[RHGM18] Mark Raasveldt, Pedro Holanda, Tim Gubner, and Hannes Mühleisen.
Fair Benchmarking Considered Difficult: Common Pitfalls In Database
Performance Testing. In DBTEST, 2018.

[ris21] https://www.nextplatform.com/2020/08/21/alibaba-on-the-
bleeding-edge-of-risc-v-with-xt910/, 2021. Accessed: 2021-03-
02.

[RM19] Mark Raasveldt and Hannes Mühleisen. DuckDB: An Embeddable
Analytical Database. In SIGMOD, page 1981–1984, 2019.

[SAB+05] Michael Stonebraker, Daniel J. Abadi, Adam Batkin, Xuedong Chen,
Mitch Cherniack, Miguel Ferreira, Edmond Lau, Amerson Lin, Sam
Madden, Elizabeth O’Neil, Pat O’Neil, Alex Rasin, Nga Tran, and
Stan Zdonik. C-store: A Column-oriented DBMS. In PVLDB, pages
553–564, 2005.

182

https://luajit.org/luajit.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
http://lua-users.org/lists/lua-l/2009-11/msg00089.html
https://wiki.postgresql.org/index.php?title=Cyclic_Tag_System&oldid=15106
https://wiki.postgresql.org/index.php?title=Cyclic_Tag_System&oldid=15106
https://stackoverflow.com/questions/46521694/what-are-mm-prefetch-locality-hints
https://stackoverflow.com/questions/46521694/what-are-mm-prefetch-locality-hints
https://stackoverflow.com/questions/46521694/what-are-mm-prefetch-locality-hints
https://databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://databricks.com/blog/2021/06/17/announcing-photon-public-preview-the-next-generation-query-engine-on-the-databricks-lakehouse-platform.html
https://www.nextplatform.com/2020/08/21/alibaba-on-the-bleeding-edge-of-risc-v-with-xt910/
https://www.nextplatform.com/2020/08/21/alibaba-on-the-bleeding-edge-of-risc-v-with-xt910/

BIBLIOGRAPHY

[Sam12] Samsung. Samsung Exynos 5 Dual Powers the New Google Chrome-
book. https://news.samsung.com/global/samsung-exynos-5-
dual-powers-the-new-google-chromebook, 2012. Accessed: 2024-
08-26.

[SCD16] Stefan Schuh, Xiao Chen, and Jens Dittrich. An Experimental Compar-
ison of Thirteen Relational Equi-Joins in Main Memory. In SIGMOD,
pages 1961–1976, 2016.

[Shi13] Anand Lal Shimpi. AMD’s Jaguar Architecture: The CPU
Powering Xbox One, PlayStation 4, Kabini & Temash. https:
//www.anandtech.com/show/6976/amds-jaguar-architecture-
the-cpu-powering-xbox-one-playstation-4-kabini-temash/4,
2013. Accessed: 2022-02-11.

[Shi21] Anton Shilov. Alibaba Develops Its Own 5nm 128-Core Arm-
Based Server Chip. https://www.tomshardware.com/news/alibaba-
unveils-128-core-server-cpu, 2021. Accessed: 2022-07-16.

[SHM+16] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of Go with deep neural networks and tree search. nature,
529:484–489, 2016.

[SKP+16] Amir Shaikhha, Yannis Klonatos, Lionel Parreaux, Lewis Brown, Mo-
hammad Dashti, and Christoph Koch. How to Architect a Query Com-
piler. In SIGMOD, pages 1907–1922, 2016.

[Son] Sony. Tech Specs. https://www.playstation.com/en-us/ps4/tech-
specs/. Accessed: 2022-02-11.

[SQL20] The SQLite Bytecode Engine. https://www.sqlite.org/opcode.
html, 2020. Accessed: 2020-06-24.

[SR86] Michael Stonebraker and Lawrence A. Rowe. The Design of POST-
GRES. SIGMOD, pages 340–355, 1986.

[SZB11] Juliusz Sompolski, Marcin Zukowski, and Peter Boncz. Vectorization
vs. Compilation in Query Execution. In Proceedings of the Seventh
International Workshop on Data Management on New Hardware, Da-
MoN ’11, pages 33–40, 2011.

[TGR+18] Diego Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and Peter
Boncz. Optimizing Group-By and Aggregation using GPU-CPU Co-
Processing. In ADMS@ VLDB, pages 1–10, 2018.

[Tur86] Valentin F Turchin. The concept of a supercompiler. ACM Transac-
tions on Programming Languages and Systems (TOPLAS), 8(3):292–
325, 1986.

[UPD+18] Annett Ungethum, Johannes Pietrzyk, Patrick Damme, Dirk Habich,
and Wolfgang Lehner. Conflict detection-based run-length encoding-
AVX-512 CD instruction set in action. In ICDE, pages 96–101, 2018.

[Var21] Rahoul Varma. The rise of Chromebooks. https://community.arm.
com/arm-community-blogs/b/architectures-and-processors-
blog/posts/rise-of-chromebooks, 2021. Accessed: 2024-08-20.

183

https://news.samsung.com/global/samsung-exynos-5-dual-powers-the-new-google-chromebook
https://news.samsung.com/global/samsung-exynos-5-dual-powers-the-new-google-chromebook
https://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-kabini-temash/4
https://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-kabini-temash/4
https://www.anandtech.com/show/6976/amds-jaguar-architecture-the-cpu-powering-xbox-one-playstation-4-kabini-temash/4
https://www.tomshardware.com/news/alibaba-unveils-128-core-server-cpu
https://www.tomshardware.com/news/alibaba-unveils-128-core-server-cpu
https://www.playstation.com/en-us/ps4/tech-specs/
https://www.playstation.com/en-us/ps4/tech-specs/
https://www.sqlite.org/opcode.html
https://www.sqlite.org/opcode.html
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/rise-of-chromebooks
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/rise-of-chromebooks
https://community.arm.com/arm-community-blogs/b/architectures-and-processors-blog/posts/rise-of-chromebooks

BIBLIOGRAPHY

[VHF+18] Adrian Vogelsgesang, Michael Haubenschild, Jan Finis, Alfons Kem-
per, Viktor Leis, Tobias Muehlbauer, Thomas Neumann, and Manuel
Then. Get Real: How Benchmarks Fail to Represent the Real World.
In DBTEST, 2018.

[Wad88] Philip Wadler. Deforestation: Transforming Programs to Eliminate
Trees. In ESOP, pages 231–248, 1988.

[XCZ+21] Jing Xia, Chuanning Cheng, Xiping Zhou, Yuxing Hu, and Peter Chun.
Kunpeng 920: The First 7-nm Chiplet-Based 64-Core ARM SoC for
Cloud Services. IEEE Micro, 41:67–75, 2021.

[ZHNB06] Marcin Zukowski, Sandor Heman, Niels Nes, and Peter Boncz. Super-
scalar RAM-CPU cache compression. In ICDE, 2006.

[ZNB08] Marcin Zukowski, Niels Nes, and Peter Boncz. DSM vs. NSM: CPU
performance tradeoffs in block-oriented query processing. In Da-
MoN@SIGMOD, pages 47–54, 2008.

184

CHAPTER 10

Summary

For decades, computers have been used for analyzing data, more recently (still
decades ago) via database management systems (DBMS). DBMS are systems that
facilitate data storage, modification and analysis, and on top of that, provide certain
guarantees. With huge, and often increasing, data volumes, the efficiency of data
analysis becomes increasingly important.

Commonly, queries are formulated in some high-level language (typically SQL) for
which the DBMS has to find an “optimal” implementation in a lower-level language
(which is afterward either interpreted or directly executed). This, typically, means
restricting possible choices, which DBMS traditionally do by either fixing certain
choices (like e.g. query execution technique/paradigm) or finding a cost-based op-
timum (for algorithms, ordering, etc.). The generated implementation (flavor) is
rather oblivious to the data set (except for possibly relying on optimizer statis-
tics) and environment (hardware, operating system ...), and is, therefore, likely not
optimal on the data set and environment “at hand”. With more knowledge of the
current instance (data set, query, and environment), more efficient implementations,
so-called instance-specific optimizations, should be possible.

185

This thesis investigates instance-specific optimizations and focuses on answering two
questions: (1) How far can query plans be optimized to the specific instance and
(2) how can query engines exploit increasingly heterogeneous modern hardware?

First, we explore the design space (of possible instance-specific optimizations) man-
ually. We found certain techniques that can improve query performance: Thinner
data types (Compact Data Types) can fit more data into SIMD registers which
improves throughput for arithmetic operations and In-Register Aggregation is a
special aggregation optimized for a group-bys with a low number of groups. Fur-
thermore, it is possible to compress hash tables (assuming data distributions allow
it) and optimistically compress strings using dictionaries. Both not only improve
memory footprint but also runtime.

Second, we simplify the exploration of the design space by using a domain-specific
language (VOILA) and synthesizing specific flavors from VOILA. We show that
VOILA can not only generate state-of-the-art implementations (e.g. Vectorized
and Data-centric Execution) with competitive performance, but also can generate
variants as well as mixes thereof (across and within pipelines).

Third, we highlight that the optimal flavor depends on the environment and certain
hardware choices can favor certain flavors. Therefore, more or less esoteric hardware
choices can weaken/break rules of thumb (e.g. Vectorized Execution outperforms
on join-heavy workloads). As the environment and hardware “at hand” are often
not fully known ahead of time (i.e. when the DBMS is developed), neither is the
optimal flavor. Therefore, more flexible and dynamic query execution is needed.
One possible solution is adding another layer of abstraction, by using a virtual
machine to execute queries.

Fourth, we propose such a virtual machine (Excalibur) that explores and exploits
different instance-specific optimizations, while the query is running (on-the-fly).
Possible flavors are explored automatically and good flavors are remembered, within
and across similar queries. Excalibur demonstrates how a highly flexible and adap-
tive query engine could look like and how it can be integrated into a framework
that uses Vectorized Execution.

In summary, this thesis explored the design space of instance-specific optimizations.
We, first, explored the space manually and found points with improved performance.
Afterward, we used a domain-specific language to simplify and automate the explo-
ration process. Finally, we described a prototype that explores the space of possible
optimizations, while the query is running.

186

CHAPTER 11

Publications

This thesis is based on the following publications:

• Exploring Query Execution Strategies for JIT, Vectorization and
SIMD
Tim Gubner and Peter Boncz
VLDB - Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures (ADMS) 2017

• Designing an adaptive VM that combines vectorized and JIT exe-
cution on heterogeneous hardware
Tim Gubner
ICDE - PhD Symposium 2018

• Efficient Query Processing with Optimistically Compressed Hash
Tables & Strings in the USSR
Tim Gubner, Viktor Leis and Peter Boncz
IEEE International Conference on Data Engineering (ICDE) 2020

• Charting the Design Space of Query Execution using VOILA
Tim Gubner and Peter Boncz
International Conference on Very Large Data Bases (VLDB) 2021

187

• Highlighting the Performance Diversity of Analytical Queries using
VOILA
Tim Gubner and Peter Boncz
VLDB - Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures (ADMS) 2021

• Optimistically Compressed Hash Tables & Strings in the USSR1

Tim Gubner, Viktor Leis and Peter Boncz
SIGMOD Record 2021

• Excalibur: A Virtual Machine for Adaptive Fine-grained JIT-Compiled
Query Execution based on VOILA
Tim Gubner and Peter Boncz
International Conference on Very Large Data Bases (VLDB) 2023

Further set of publications not included in this thesis:

• Fair Benchmarking Considered Difficult: Common Pitfalls In Data-
base Performance Testing
Mark Raasveldt, Pedro Holanda, Tim Gubner and Hannes Mühleisen
SIGMOD - International Workshop on Testing Database Systems (DBTest)
2018

• Optimizing Group-By And Aggregation using GPU-CPU Co-Processing
Diego Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg and Peter Boncz
VLDB - Workshop on Accelerating Analytics and Data Management Systems
Using Modern Processor and Storage Architectures (ADMS) 2018

• Fluid Co-processing: GPU Bloom-filters for CPU Joins
Tim Gubner, Diego Tomé, Harald Lang and Peter Boncz
SIGMOD - Workshop on Data Management on New Hardware (DaMoN) 2019

1Republished version of 2020 ICDE paper that won the award for the best research paper of
the conference.

188

SIKS Dissertation Series

2016
01 Syed Saiden Abbas (RUN), Recognition of Shapes by Humans and Machines
02 Michiel Christiaan Meulendijk (UU), Optimizing medication reviews through

decision support: prescribing a better pill to swallow
03 Maya Sappelli (RUN), Knowledge Work in Context: User Centered Knowledge

Worker Support
04 Laurens Rietveld (VUA), Publishing and Consuming Linked Data
05 Evgeny Sherkhonov (UvA), Expanded Acyclic Queries: Containment and an

Application in Explaining Missing Answers
06 Michel Wilson (TUD), Robust scheduling in an uncertain environment
07 Jeroen de Man (VUA), Measuring and modeling negative emotions for virtual

training
08 Matje van de Camp (TiU), A Link to the Past: Constructing Historical Social

Networks from Unstructured Data
09 Archana Nottamkandath (VUA), Trusting Crowdsourced Information on Cultural

Artefacts
10 George Karafotias (VUA), Parameter Control for Evolutionary Algorithms
11 Anne Schuth (UvA), Search Engines that Learn from Their Users
12 Max Knobbout (UU), Logics for Modelling and Verifying Normative Multi-Agent

Systems
13 Nana Baah Gyan (VUA), The Web, Speech Technologies and Rural Development in

West Africa - An ICT4D Approach
14 Ravi Khadka (UU), Revisiting Legacy Software System Modernization
15 Steffen Michels (RUN), Hybrid Probabilistic Logics - Theoretical Aspects,

Algorithms and Experiments
16 Guangliang Li (UvA), Socially Intelligent Autonomous Agents that Learn from

Human Reward
17 Berend Weel (VUA), Towards Embodied Evolution of Robot Organisms
18 Albert Meroño Peñuela (VUA), Refining Statistical Data on the Web
19 Julia Efremova (TU/e), Mining Social Structures from Genealogical Data
20 Daan Odijk (UvA), Context & Semantics in News & Web Search

189

21 Alejandro Moreno Célleri (UT), From Traditional to Interactive Playspaces:
Automatic Analysis of Player Behavior in the Interactive Tag Playground

22 Grace Lewis (VUA), Software Architecture Strategies for Cyber-Foraging Systems
23 Fei Cai (UvA), Query Auto Completion in Information Retrieval
24 Brend Wanders (UT), Repurposing and Probabilistic Integration of Data; An

Iterative and data model independent approach
25 Julia Kiseleva (TU/e), Using Contextual Information to Understand Searching and

Browsing Behavior
26 Dilhan Thilakarathne (VUA), In or Out of Control: Exploring Computational

Models to Study the Role of Human Awareness and Control in Behavioural Choices,
with Applications in Aviation and Energy Management Domains

27 Wen Li (TUD), Understanding Geo-spatial Information on Social Media
28 Mingxin Zhang (TUD), Large-scale Agent-based Social Simulation - A study on

epidemic prediction and control
29 Nicolas Höning (TUD), Peak reduction in decentralised electricity systems -

Markets and prices for flexible planning
30 Ruud Mattheij (TiU), The Eyes Have It
31 Mohammad Khelghati (UT), Deep web content monitoring
32 Eelco Vriezekolk (UT), Assessing Telecommunication Service Availability Risks for

Crisis Organisations
33 Peter Bloem (UvA), Single Sample Statistics, exercises in learning from just one

example
34 Dennis Schunselaar (TU/e), Configurable Process Trees: Elicitation, Analysis, and

Enactment
35 Zhaochun Ren (UvA), Monitoring Social Media: Summarization, Classification and

Recommendation
36 Daphne Karreman (UT), Beyond R2D2: The design of nonverbal interaction

behavior optimized for robot-specific morphologies
37 Giovanni Sileno (UvA), Aligning Law and Action - a conceptual and computational

inquiry
38 Andrea Minuto (UT), Materials that Matter - Smart Materials meet Art &

Interaction Design
39 Merijn Bruijnes (UT), Believable Suspect Agents; Response and Interpersonal Style

Selection for an Artificial Suspect
40 Christian Detweiler (TUD), Accounting for Values in Design
41 Thomas King (TUD), Governing Governance: A Formal Framework for Analysing

Institutional Design and Enactment Governance
42 Spyros Martzoukos (UvA), Combinatorial and Compositional Aspects of Bilingual

Aligned Corpora
43 Saskia Koldijk (RUN), Context-Aware Support for Stress Self-Management: From

Theory to Practice
44 Thibault Sellam (UvA), Automatic Assistants for Database Exploration
45 Bram van de Laar (UT), Experiencing Brain-Computer Interface Control
46 Jorge Gallego Perez (UT), Robots to Make you Happy
47 Christina Weber (UL), Real-time foresight - Preparedness for dynamic innovation

networks
48 Tanja Buttler (TUD), Collecting Lessons Learned
49 Gleb Polevoy (TUD), Participation and Interaction in Projects. A Game-Theoretic

Analysis
50 Yan Wang (TiU), The Bridge of Dreams: Towards a Method for Operational

Performance Alignment in IT-enabled Service Supply Chains

2017
01 Jan-Jaap Oerlemans (UL), Investigating Cybercrime
02 Sjoerd Timmer (UU), Designing and Understanding Forensic Bayesian Networks

using Argumentation

190

03 Daniël Harold Telgen (UU), Grid Manufacturing; A Cyber-Physical Approach with
Autonomous Products and Reconfigurable Manufacturing Machines

04 Mrunal Gawade (CWI), Multi-core Parallelism in a Column-store
05 Mahdieh Shadi (UvA), Collaboration Behavior
06 Damir Vandic (EUR), Intelligent Information Systems for Web Product Search
07 Roel Bertens (UU), Insight in Information: from Abstract to Anomaly
08 Rob Konijn (VUA), Detecting Interesting Differences:Data Mining in Health

Insurance Data using Outlier Detection and Subgroup Discovery
09 Dong Nguyen (UT), Text as Social and Cultural Data: A Computational

Perspective on Variation in Text
10 Robby van Delden (UT), (Steering) Interactive Play Behavior
11 Florian Kunneman (RUN), Modelling patterns of time and emotion in Twitter

#anticipointment
12 Sander Leemans (TU/e), Robust Process Mining with Guarantees
13 Gijs Huisman (UT), Social Touch Technology - Extending the reach of social touch

through haptic technology
14 Shoshannah Tekofsky (TiU), You Are Who You Play You Are: Modelling Player

Traits from Video Game Behavior
15 Peter Berck (RUN), Memory-Based Text Correction
16 Aleksandr Chuklin (UvA), Understanding and Modeling Users of Modern Search

Engines
17 Daniel Dimov (UL), Crowdsourced Online Dispute Resolution
18 Ridho Reinanda (UvA), Entity Associations for Search
19 Jeroen Vuurens (UT), Proximity of Terms, Texts and Semantic Vectors in

Information Retrieval
20 Mohammadbashir Sedighi (TUD), Fostering Engagement in Knowledge Sharing:

The Role of Perceived Benefits, Costs and Visibility
21 Jeroen Linssen (UT), Meta Matters in Interactive Storytelling and Serious Gaming

(A Play on Worlds)
22 Sara Magliacane (VUA), Logics for causal inference under uncertainty
23 David Graus (UvA), Entities of Interest — Discovery in Digital Traces
24 Chang Wang (TUD), Use of Affordances for Efficient Robot Learning
25 Veruska Zamborlini (VUA), Knowledge Representation for Clinical Guidelines, with

applications to Multimorbidity Analysis and Literature Search
26 Merel Jung (UT), Socially intelligent robots that understand and respond to human

touch
27 Michiel Joosse (UT), Investigating Positioning and Gaze Behaviors of Social

Robots: People’s Preferences, Perceptions and Behaviors
28 John Klein (VUA), Architecture Practices for Complex Contexts
29 Adel Alhuraibi (TiU), From IT-BusinessStrategic Alignment to Performance: A

Moderated Mediation Model of Social Innovation, and Enterprise Governance of IT"
30 Wilma Latuny (TiU), The Power of Facial Expressions
31 Ben Ruijl (UL), Advances in computational methods for QFT calculations
32 Thaer Samar (RUN), Access to and Retrievability of Content in Web Archives
33 Brigit van Loggem (OU), Towards a Design Rationale for Software Documentation:

A Model of Computer-Mediated Activity
34 Maren Scheffel (OU), The Evaluation Framework for Learning Analytics
35 Martine de Vos (VUA), Interpreting natural science spreadsheets
36 Yuanhao Guo (UL), Shape Analysis for Phenotype Characterisation from

High-throughput Imaging
37 Alejandro Montes Garcia (TU/e), WiBAF: A Within Browser Adaptation

Framework that Enables Control over Privacy
38 Alex Kayal (TUD), Normative Social Applications
39 Sara Ahmadi (RUN), Exploiting properties of the human auditory system and

compressive sensing methods to increase noise robustness in ASR

191

40 Altaf Hussain Abro (VUA), Steer your Mind: Computational Exploration of Human
Control in Relation to Emotions, Desires and Social Support For applications in
human-aware support systems

41 Adnan Manzoor (VUA), Minding a Healthy Lifestyle: An Exploration of Mental
Processes and a Smart Environment to Provide Support for a Healthy Lifestyle

42 Elena Sokolova (RUN), Causal discovery from mixed and missing data with
applications on ADHD datasets

43 Maaike de Boer (RUN), Semantic Mapping in Video Retrieval
44 Garm Lucassen (UU), Understanding User Stories - Computational Linguistics in

Agile Requirements Engineering
45 Bas Testerink (UU), Decentralized Runtime Norm Enforcement
46 Jan Schneider (OU), Sensor-based Learning Support
47 Jie Yang (TUD), Crowd Knowledge Creation Acceleration
48 Angel Suarez (OU), Collaborative inquiry-based learning

2018
01 Han van der Aa (VUA), Comparing and Aligning Process Representations
02 Felix Mannhardt (TU/e), Multi-perspective Process Mining
03 Steven Bosems (UT), Causal Models For Well-Being: Knowledge Modeling,

Model-Driven Development of Context-Aware Applications, and Behavior Prediction
04 Jordan Janeiro (TUD), Flexible Coordination Support for Diagnosis Teams in

Data-Centric Engineering Tasks
05 Hugo Huurdeman (UvA), Supporting the Complex Dynamics of the Information

Seeking Process
06 Dan Ionita (UT), Model-Driven Information Security Risk Assessment of

Socio-Technical Systems
07 Jieting Luo (UU), A formal account of opportunism in multi-agent systems
08 Rick Smetsers (RUN), Advances in Model Learning for Software Systems
09 Xu Xie (TUD), Data Assimilation in Discrete Event Simulations
10 Julienka Mollee (VUA), Moving forward: supporting physical activity behavior

change through intelligent technology
11 Mahdi Sargolzaei (UvA), Enabling Framework for Service-oriented Collaborative

Networks
12 Xixi Lu (TU/e), Using behavioral context in process mining
13 Seyed Amin Tabatabaei (VUA), Computing a Sustainable Future
14 Bart Joosten (TiU), Detecting Social Signals with Spatiotemporal Gabor Filters
15 Naser Davarzani (UM), Biomarker discovery in heart failure
16 Jaebok Kim (UT), Automatic recognition of engagement and emotion in a group of

children
17 Jianpeng Zhang (TU/e), On Graph Sample Clustering
18 Henriette Nakad (UL), De Notaris en Private Rechtspraak
19 Minh Duc Pham (VUA), Emergent relational schemas for RDF
20 Manxia Liu (RUN), Time and Bayesian Networks
21 Aad Slootmaker (OU), EMERGO: a generic platform for authoring and playing

scenario-based serious games
22 Eric Fernandes de Mello Araújo (VUA), Contagious: Modeling the Spread of

Behaviours, Perceptions and Emotions in Social Networks
23 Kim Schouten (EUR), Semantics-driven Aspect-Based Sentiment Analysis
24 Jered Vroon (UT), Responsive Social Positioning Behaviour for Semi-Autonomous

Telepresence Robots
25 Riste Gligorov (VUA), Serious Games in Audio-Visual Collections
26 Roelof Anne Jelle de Vries (UT),Theory-Based and Tailor-Made: Motivational

Messages for Behavior Change Technology
27 Maikel Leemans (TU/e), Hierarchical Process Mining for Scalable Software Analysis
28 Christian Willemse (UT), Social Touch Technologies: How they feel and how they

make you feel
29 Yu Gu (TiU), Emotion Recognition from Mandarin Speech

192

30 Wouter Beek (VUA), The "K" in "semantic web" stands for "knowledge": scaling
semantics to the web

2019
01 Rob van Eijk (UL),Web privacy measurement in real-time bidding systems. A

graph-based approach to RTB system classification
02 Emmanuelle Beauxis Aussalet (CWI, UU), Statistics and Visualizations for

Assessing Class Size Uncertainty
03 Eduardo Gonzalez Lopez de Murillas (TU/e), Process Mining on Databases:

Extracting Event Data from Real Life Data Sources
04 Ridho Rahmadi (RUN), Finding stable causal structures from clinical data
05 Sebastiaan van Zelst (TU/e), Process Mining with Streaming Data
06 Chris Dijkshoorn (VUA), Nichesourcing for Improving Access to Linked Cultural

Heritage Datasets
07 Soude Fazeli (TUD), Recommender Systems in Social Learning Platforms
08 Frits de Nijs (TUD), Resource-constrained Multi-agent Markov Decision Processes
09 Fahimeh Alizadeh Moghaddam (UvA), Self-adaptation for energy efficiency in

software systems
10 Qing Chuan Ye (EUR), Multi-objective Optimization Methods for Allocation and

Prediction
11 Yue Zhao (TUD), Learning Analytics Technology to Understand Learner Behavioral

Engagement in MOOCs
12 Jacqueline Heinerman (VUA), Better Together
13 Guanliang Chen (TUD), MOOC Analytics: Learner Modeling and Content

Generation
14 Daniel Davis (TUD), Large-Scale Learning Analytics: Modeling Learner Behavior &

Improving Learning Outcomes in Massive Open Online Courses
15 Erwin Walraven (TUD), Planning under Uncertainty in Constrained and Partially

Observable Environments
16 Guangming Li (TU/e), Process Mining based on Object-Centric Behavioral

Constraint (OCBC) Models
17 Ali Hurriyetoglu (RUN),Extracting actionable information from microtexts
18 Gerard Wagenaar (UU), Artefacts in Agile Team Communication
19 Vincent Koeman (TUD), Tools for Developing Cognitive Agents
20 Chide Groenouwe (UU), Fostering technically augmented human collective

intelligence
21 Cong Liu (TU/e), Software Data Analytics: Architectural Model Discovery and

Design Pattern Detection
22 Martin van den Berg (VUA),Improving IT Decisions with Enterprise Architecture
23 Qin Liu (TUD), Intelligent Control Systems: Learning, Interpreting, Verification
24 Anca Dumitrache (VUA), Truth in Disagreement - Crowdsourcing Labeled Data for

Natural Language Processing
25 Emiel van Miltenburg (VUA), Pragmatic factors in (automatic) image description
26 Prince Singh (UT), An Integration Platform for Synchromodal Transport
27 Alessandra Antonaci (OU), The Gamification Design Process applied to (Massive)

Open Online Courses
28 Esther Kuindersma (UL), Cleared for take-off: Game-based learning to prepare

airline pilots for critical situations
29 Daniel Formolo (VUA), Using virtual agents for simulation and training of social

skills in safety-critical circumstances
30 Vahid Yazdanpanah (UT), Multiagent Industrial Symbiosis Systems
31 Milan Jelisavcic (VUA), Alive and Kicking: Baby Steps in Robotics
32 Chiara Sironi (UM), Monte-Carlo Tree Search for Artificial General Intelligence in

Games
33 Anil Yaman (TU/e), Evolution of Biologically Inspired Learning in Artificial Neural

Networks

193

34 Negar Ahmadi (TU/e), EEG Microstate and Functional Brain Network Features for
Classification of Epilepsy and PNES

35 Lisa Facey-Shaw (OU), Gamification with digital badges in learning programming
36 Kevin Ackermans (OU), Designing Video-Enhanced Rubrics to Master Complex

Skills
37 Jian Fang (TUD), Database Acceleration on FPGAs
38 Akos Kadar (OU), Learning visually grounded and multilingual representations

2020
01 Armon Toubman (UL), Calculated Moves: Generating Air Combat Behaviour
02 Marcos de Paula Bueno (UL), Unraveling Temporal Processes using Probabilistic

Graphical Models
03 Mostafa Deghani (UvA), Learning with Imperfect Supervision for Language

Understanding
04 Maarten van Gompel (RUN), Context as Linguistic Bridges
05 Yulong Pei (TU/e), On local and global structure mining
06 Preethu Rose Anish (UT), Stimulation Architectural Thinking during Requirements

Elicitation - An Approach and Tool Support
07 Wim van der Vegt (OU), Towards a software architecture for reusable game

components
08 Ali Mirsoleimani (UL),Structured Parallel Programming for Monte Carlo Tree

Search
09 Myriam Traub (UU), Measuring Tool Bias and Improving Data Quality for Digital

Humanities Research
10 Alifah Syamsiyah (TU/e), In-database Preprocessing for Process Mining
11 Sepideh Mesbah (TUD), Semantic-Enhanced Training Data AugmentationMethods

for Long-Tail Entity Recognition Models
12 Ward van Breda (VUA), Predictive Modeling in E-Mental Health: Exploring

Applicability in Personalised Depression Treatment
13 Marco Virgolin (CWI), Design and Application of Gene-pool Optimal Mixing

Evolutionary Algorithms for Genetic Programming
14 Mark Raasveldt (CWI/UL), Integrating Analytics with Relational Databases
15 Konstantinos Georgiadis (OU), Smart CAT: Machine Learning for Configurable

Assessments in Serious Games
16 Ilona Wilmont (RUN), Cognitive Aspects of Conceptual Modelling
17 Daniele Di Mitri (OU), The Multimodal Tutor: Adaptive Feedback from

Multimodal Experiences
18 Georgios Methenitis (TUD), Agent Interactions & Mechanisms in Markets with

Uncertainties: Electricity Markets in Renewable Energy Systems
19 Guido van Capelleveen (UT), Industrial Symbiosis Recommender Systems
20 Albert Hankel (VUA), Embedding Green ICT Maturity in Organisations
21 Karine da Silva Miras de Araujo (VUA), Where is the robot?: Life as it could be
22 Maryam Masoud Khamis (RUN), Understanding complex systems implementation

through a modeling approach: the case of e-government in Zanzibar
23 Rianne Conijn (UT), The Keys to Writing: A writing analytics approach to

studying writing processes using keystroke logging
24 Lenin da Nóbrega Medeiros (VUA/RUN), How are you feeling, human? Towards

emotionally supportive chatbots
25 Xin Du (TU/e), The Uncertainty in Exceptional Model Mining
26 Krzysztof Leszek Sadowski (UU), GAMBIT: Genetic Algorithm for Model-Based

mixed-Integer opTimization
27 Ekaterina Muravyeva (TUD), Personal data and informed consent in an educational

context
28 Bibeg Limbu (TUD), Multimodal interaction for deliberate practice: Training

complex skills with augmented reality
29 Ioan Gabriel Bucur (RUN), Being Bayesian about Causal Inference
30 Bob Zadok Blok (UL), Creatief, Creatiever, Creatiefst

194

31 Gongjin Lan (VUA), Learning better – From Baby to Better
32 Jason Rhuggenaath (TU/e), Revenue management in online markets: pricing and

online advertising
33 Rick Gilsing (TU/e), Supporting service-dominant business model evaluation in the

context of business model innovation
34 Anna Bon (UM), Intervention or Collaboration? Redesigning Information and

Communication Technologies for Development
35 Siamak Farshidi (UU), Multi-Criteria Decision-Making in Software Production

2021
01 Francisco Xavier Dos Santos Fonseca (TUD),Location-based Games for Social

Interaction in Public Space
02 Rijk Mercuur (TUD), Simulating Human Routines: Integrating Social Practice

Theory in Agent-Based Models
03 Seyyed Hadi Hashemi (UvA), Modeling Users Interacting with Smart Devices
04 Ioana Jivet (OU), The Dashboard That Loved Me: Designing adaptive learning

analytics for self-regulated learning
05 Davide Dell’Anna (UU), Data-Driven Supervision of Autonomous Systems
06 Daniel Davison (UT), "Hey robot, what do you think?" How children learn with a

social robot
07 Armel Lefebvre (UU), Research data management for open science
08 Nardie Fanchamps (OU), The Influence of Sense-Reason-Act Programming on

Computational Thinking
09 Cristina Zaga (UT), The Design of Robothings. Non-Anthropomorphic and

Non-Verbal Robots to Promote Children’s Collaboration Through Play
10 Quinten Meertens (UvA), Misclassification Bias in Statistical Learning
11 Anne van Rossum (UL), Nonparametric Bayesian Methods in Robotic Vision
12 Lei Pi (UL), External Knowledge Absorption in Chinese SMEs
13 Bob R. Schadenberg (UT), Robots for Autistic Children: Understanding and

Facilitating Predictability for Engagement in Learning
14 Negin Samaeemofrad (UL), Business Incubators: The Impact of Their Support
15 Onat Ege Adali (TU/e), Transformation of Value Propositions into Resource

Re-Configurations through the Business Services Paradigm
16 Esam A. H. Ghaleb (UM), Bimodal emotion recognition from audio-visual cues
17 Dario Dotti (UM), Human Behavior Understanding from motion and bodily cues

using deep neural networks
18 Remi Wieten (UU), Bridging the Gap Between Informal Sense-Making Tools and

Formal Systems - Facilitating the Construction of Bayesian Networks and
Argumentation Frameworks

19 Roberto Verdecchia (VUA), Architectural Technical Debt: Identification and
Management

20 Masoud Mansoury (TU/e), Understanding and Mitigating Multi-Sided Exposure
Bias in Recommender Systems

21 Pedro Thiago Timbó Holanda (CWI), Progressive Indexes
22 Sihang Qiu (TUD), Conversational Crowdsourcing
23 Hugo Manuel Proença (UL), Robust rules for prediction and description
24 Kaijie Zhu (TU/e), On Efficient Temporal Subgraph Query Processing
25 Eoin Martino Grua (VUA), The Future of E-Health is Mobile: Combining AI and

Self-Adaptation to Create Adaptive E-Health Mobile Applications
26 Benno Kruit (CWI/VUA), Reading the Grid: Extending Knowledge Bases from

Human-readable Tables
27 Jelte van Waterschoot (UT), Personalized and Personal Conversations: Designing

Agents Who Want to Connect With You
28 Christoph Selig (UL), Understanding the Heterogeneity of Corporate

Entrepreneurship Programs

2022
01 Judith van Stegeren (UT), Flavor text generation for role-playing video games

195

02 Paulo da Costa (TU/e), Data-driven Prognostics and Logistics Optimisation: A
Deep Learning Journey

03 Ali el Hassouni (VUA), A Model A Day Keeps The Doctor Away: Reinforcement
Learning For Personalized Healthcare

04 Ünal Aksu (UU), A Cross-Organizational Process Mining Framework
05 Shiwei Liu (TU/e), Sparse Neural Network Training with In-Time

Over-Parameterization
06 Reza Refaei Afshar (TU/e), Machine Learning for Ad Publishers in Real Time

Bidding
07 Sambit Praharaj (OU), Measuring the Unmeasurable? Towards Automatic

Co-located Collaboration Analytics
08 Maikel L. van Eck (TU/e), Process Mining for Smart Product Design
09 Oana Andreea Inel (VUA), Understanding Events: A Diversity-driven

Human-Machine Approach
10 Felipe Moraes Gomes (TUD), Examining the Effectiveness of Collaborative Search

Engines
11 Mirjam de Haas (UT), Staying engaged in child-robot interaction, a quantitative

approach to studying preschoolers’ engagement with robots and tasks during
second-language tutoring

12 Guanyi Chen (UU), Computational Generation of Chinese Noun Phrases
13 Xander Wilcke (VUA), Machine Learning on Multimodal Knowledge Graphs:

Opportunities, Challenges, and Methods for Learning on Real-World Heterogeneous
and Spatially-Oriented Knowledge

14 Michiel Overeem (UU), Evolution of Low-Code Platforms
15 Jelmer Jan Koorn (UU), Work in Process: Unearthing Meaning using Process

Mining
16 Pieter Gijsbers (TU/e), Systems for AutoML Research
17 Laura van der Lubbe (VUA), Empowering vulnerable people with serious games

and gamification
18 Paris Mavromoustakos Blom (TiU), Player Affect Modelling and Video Game

Personalisation
19 Bilge Yigit Ozkan (UU), Cybersecurity Maturity Assessment and Standardisation
20 Fakhra Jabeen (VUA), Dark Side of the Digital Media - Computational Analysis of

Negative Human Behaviors on Social Media
21 Seethu Mariyam Christopher (UM), Intelligent Toys for Physical and Cognitive

Assessments
22 Alexandra Sierra Rativa (TiU), Virtual Character Design and its potential to foster

Empathy, Immersion, and Collaboration Skills in Video Games and Virtual Reality
Simulations

23 Ilir Kola (TUD), Enabling Social Situation Awareness in Support Agents
24 Samaneh Heidari (UU), Agents with Social Norms and Values - A framework for

agent based social simulations with social norms and personal values
25 Anna L.D. Latour (UL), Optimal decision-making under constraints and uncertainty
26 Anne Dirkson (UL), Knowledge Discovery from Patient Forums: Gaining novel

medical insights from patient experiences
27 Christos Athanasiadis (UM), Emotion-aware cross-modal domain adaptation in

video sequences
28 Onuralp Ulusoy (UU), Privacy in Collaborative Systems
29 Jan Kolkmeier (UT), From Head Transform to Mind Transplant: Social Interactions

in Mixed Reality
30 Dean De Leo (CWI), Analysis of Dynamic Graphs on Sparse Arrays
31 Konstantinos Traganos (TU/e), Tackling Complexity in Smart Manufacturing with

Advanced Manufacturing Process Management
32 Cezara Pastrav (UU), Social simulation for socio-ecological systems
33 Brinn Hekkelman (CWI/TUD), Fair Mechanisms for Smart Grid Congestion

Management

196

34 Nimat Ullah (VUA), Mind Your Behaviour: Computational Modelling of Emotion
& Desire Regulation for Behaviour Change

35 Mike E.U. Ligthart (VUA), Shaping the Child-Robot Relationship: Interaction
Design Patterns for a Sustainable Interaction

2023
01 Bojan Simoski (VUA), Untangling the Puzzle of Digital Health Interventions
02 Mariana Rachel Dias da Silva (TiU), Grounded or in flight? What our bodies can

tell us about the whereabouts of our thoughts
03 Shabnam Najafian (TUD), User Modeling for Privacy-preserving Explanations in

Group Recommendations
04 Gineke Wiggers (UL), The Relevance of Impact: bibliometric-enhanced legal

information retrieval
05 Anton Bouter (CWI), Optimal Mixing Evolutionary Algorithms for Large-Scale

Real-Valued Optimization, Including Real-World Medical Applications
06 António Pereira Barata (UL), Reliable and Fair Machine Learning for Risk

Assessment
07 Tianjin Huang (TU/e), The Roles of Adversarial Examples on Trustworthiness of

Deep Learning
08 Lu Yin (TU/e), Knowledge Elicitation using Psychometric Learning
09 Xu Wang (VUA), Scientific Dataset Recommendation with Semantic Techniques
10 Dennis J.N.J. Soemers (UM), Learning State-Action Features for General Game

Playing
11 Fawad Taj (VUA), Towards Motivating Machines: Computational Modeling of the

Mechanism of Actions for Effective Digital Health Behavior Change Applications
12 Tessel Bogaard (VUA), Using Metadata to Understand Search Behavior in Digital

Libraries
13 Injy Sarhan (UU), Open Information Extraction for Knowledge Representation
14 Selma Čaušević (TUD), Energy resilience through self-organization
15 Alvaro Henrique Chaim Correia (TU/e), Insights on Learning Tractable

Probabilistic Graphical Models
16 Peter Blomsma (TiU), Building Embodied Conversational Agents: Observations on

human nonverbal behaviour as a resource for the development of artificial characters
17 Meike Nauta (UT), Explainable AI and Interpretable Computer Vision – From

Oversight to Insight
18 Gustavo Penha (TUD), Designing and Diagnosing Models for Conversational Search

and Recommendation
19 George Aalbers (TiU), Digital Traces of the Mind: Using Smartphones to Capture

Signals of Well-Being in Individuals
20 Arkadiy Dushatskiy (TUD), Expensive Optimization with Model-Based

Evolutionary Algorithms applied to Medical Image Segmentation using Deep
Learning

21 Gerrit Jan de Bruin (UL), Network Analysis Methods for Smart Inspection in the
Transport Domain

22 Alireza Shojaifar (UU), Volitional Cybersecurity
23 Theo Theunissen (UU), Documentation in Continuous Software Development
24 Agathe Balayn (TUD), Practices Towards Hazardous Failure Diagnosis in Machine

Learning
25 Jurian Baas (UU), Entity Resolution on Historical Knowledge Graphs
26 Loek Tonnaer (TU/e), Linearly Symmetry-Based Disentangled Representations and

their Out-of-Distribution Behaviour
27 Ghada Sokar (TU/e), Learning Continually Under Changing Data Distributions
28 Floris den Hengst (VUA), Learning to Behave: Reinforcement Learning in Human

Contexts
29 Tim Draws (TUD), Understanding Viewpoint Biases in Web Search Results

2024

197

01 Daphne Miedema (TU/e), On Learning SQL: Disentangling concepts in data
systems education

02 Emile van Krieken (VUA), Optimisation in Neurosymbolic Learning Systems
03 Feri Wijayanto (RUN), Automated Model Selection for Rasch and Mediation

Analysis
04 Mike Huisman (UL), Understanding Deep Meta-Learning
05 Yiyong Gou (UM), Aerial Robotic Operations: Multi-environment Cooperative

Inspection & Construction Crack Autonomous Repair
06 Azqa Nadeem (TUD), Understanding Adversary Behavior via XAI: Leveraging

Sequence Clustering to Extract Threat Intelligence
07 Parisa Shayan (TiU), Modeling User Behavior in Learning Management Systems
08 Xin Zhou (UvA), From Empowering to Motivating: Enhancing Policy Enforcement

through Process Design and Incentive Implementation
09 Giso Dal (UT), Probabilistic Inference Using Partitioned Bayesian Networks
10 Cristina-Iulia Bucur (VUA), Linkflows: Towards Genuine Semantic Publishing in

Science
11 withdrawn
12 Peide Zhu (TUD), Towards Robust Automatic Question Generation For Learning
13 Enrico Liscio (TUD), Context-Specific Value Inference via Hybrid Intelligence
14 Larissa Capobianco Shimomura (TU/e), On Graph Generating Dependencies and

their Applications in Data Profiling
15 Ting Liu (VUA), A Gut Feeling: Biomedical Knowledge Graphs for Interrelating

the Gut Microbiome and Mental Health
16 Arthur Barbosa Câmara (TUD), Designing Search-as-Learning Systems
17 Razieh Alidoosti (VUA), Ethics-aware Software Architecture Design
18 Laurens Stoop (UU), Data Driven Understanding of Energy-Meteorological

Variability and its Impact on Energy System Operations
19 Azadeh Mozafari Mehr (TU/e), Multi-perspective Conformance Checking:

Identifying and Understanding Patterns of Anomalous Behavior
20 Ritsart Anne Plantenga (UL), Omgang met Regels
21 Federica Vinella (UU), Crowdsourcing User-Centered Teams
22 Zeynep Ozturk Yurt (TU/e), Beyond Routine: Extending BPM for

Knowledge-Intensive Processes with Controllable Dynamic Contexts
23 Jie Luo (VUA), Lamarck’s Revenge: Inheritance of Learned Traits Improves Robot

Evolution
24 Nirmal Roy (TUD), Exploring the effects of interactive interfaces on user search

behaviour
25 Alisa Rieger (TUD), Striving for Responsible Opinion Formation in Web Search on

Debated Topics

198

	Introduction
	Research Questions and Contributions
	Thesis Outline & Publications

	Background
	Increasingly Heterogeneous Hardware
	Brief Introduction to Trends in CPU Architectures
	Trends in CPU Architectures.
	Trends in CPU Features
	Conclusion

	Abstraction using Virtual Machines
	Notable Examples
	Conclusion

	Analytical RDBMS
	Relational Database Management Systems (RDBMSs)
	Analytical RDBMS
	Conclusion

	Query Execution Paradigms
	Iterator-based Execution
	Data-Centric Compilation
	Columnar Execution
	Vectorized Execution
	Relative Performance
	Conclusion

	Domain-Specific Languages
	Plans
	Comprehensions
	Vector Models
	Low-level Imperative Languages
	Conclusion

	Compact Types & In-Register Aggregation
	Introduction
	Compact Data Types
	In-Register (Group-By &) Aggregation
	Evaluation
	Standard vs. In-Register Aggregation
	Q1 Flavors

	Conclusion

	Compressed Hash Tables & Soviet Strings
	Introduction
	Domain-Guided Prefix Suppression
	Domain Derivation
	Prefix Suppression
	Compression and Decompression
	Operating on Compressed Keys
	Generating Pre-Compiled Kernels
	Tackling the Packing Problem

	Optimistic Splitting
	Optimistic Aggregates
	Other Applications

	USSR: A Dynamic String Dictionary
	The Problems with Global Dictionaries
	Unique Strings Self-aligned Region (USSR)
	Data Structure Details
	Insertion
	Accelerating Hashing & Comparisons
	Optimistic Splitting & the USSR

	Evaluation
	TPC-H Benchmark
	Public BI Benchmark
	Micro-Bench: USSR and Group-By
	Micro-Bench: Join Probe Performance
	Micro-Bench: Hash Join Key Domain
	Micro-Bench: Memory Footprint against other Hash Tables
	Micro-Bench: Compression Overhead
	Micro-Bench: Optimistic Splitting

	Conclusion

	Encapsulating the Essence in VOILA
	Introduction
	VOILA
	Core Concepts
	Language

	Formal Semantics of VOILA
	Expressions
	Statements
	Operators

	Common Relational Operators in VOILA
	Scan
	Hash Group-By
	Hash Join
	Filter

	Multi-core Parallelism in VOILA
	Morsel-driven Parallelism
	Integration

	Conclusion

	Synthesizing Engines from VOILA
	Introduction
	Direct Synthesizer Back-ends
	Data-Centric Program
	Iterator-based Vectorized Program

	FUJI – A flexible back-end
	Component-based Flavor-Generation
	Flexible Unified JIT Infrastructure (FUJI)
	Mixing Flavors (BLEND)

	Evaluation
	Design Space Exploration
	Impact of Components on Runtimes
	VOILA vs. Hand-Optimized Code
	VOILA vs. State-of-the-Art Prefetching
	VOILA vs. State-of-the-Art Open-Source
	Engineering Aspects

	Conclusion

	Performance is Relative
	Introduction
	Methodology
	Micro-Benchmarks
	Memory Access
	Data-Parallel Computation
	Control Flow & Data Dependencies
	Case Study: Hash Join

	Macro-Benchmarks
	Query Performance
	Optimal Flavor
	Costs & ``Bang for the Buck''

	Conclusion

	Adaptive Virtual Machines
	Introduction
	Background
	Excalibur
	Execution Model
	Interpretation
	Compilation into Vectorized Primitives
	Code Cache

	Code Generation Flavors
	Atomic Fragments (Vectorized Execution)
	Fused Statements (Data-Centric)

	(Micro-)Adaptive Execution
	Constraints on Adaptive Execution
	Exploitation
	Encoding the Design Space

	Exploration Strategies
	Randomized Exploration (rand)
	Hard-Coded Heuristic (heur)
	Monte Carlo Tree Search (MCTS)
	Remembering the Past

	Experimental Evaluation
	State-of-the-Art Competitors vs. Excalibur
	Impact of Risk Budget
	Various Scale Factors & Multi-Threading
	Adaptation to Varying Query Parameters
	Code Cache
	Adaptation over Query Runtime

	Conclusion

	Conclusion & Future Work
	Contributions
	Exploring the Design Space of Q1
	Compressing Hash Tables & Strings
	VOILA & Synthesis from VOILA
	Performance Diversity
	Excalibur

	Reflections & Future Work
	Seeking the Holy Grail — Automated Discovery
	Exploration Strategies
	Offloading to Heterogeneous Hardware
	Final Reflections

	Bibliography
	Summary
	Publications

